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METHODOLOGY

YuYin: a multi-task learning model 
of multi-modal e-commerce background music 
recommendation
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Abstract 

Appropriate background music in e-commerce advertisements can help stimulate consumption and build prod-
uct image. However, many factors like emotion and product category should be taken into account, which makes 
manually selecting music time-consuming and require professional knowledge and it becomes crucial to automati-
cally recommend music for video. For there is no e-commerce advertisements dataset, we first establish a large-
scale e-commerce advertisements dataset Commercial-98K, which covers major e-commerce categories. Then, 
we proposed a video-music retrieval model YuYin to learn the correlation between video and music. We introduce 
a weighted fusion module (WFM) to fuse emotion features and audio features from music to get a more fine-grained 
music representation. Considering the similarity of music in the same product category, YuYin is trained by multi-
task learning to explore the correlation between video and music by cross-matching video, music, and tag as well 
as a category prediction task. We conduct extensive experiments to prove YuYin achieves a remarkable improvement 
in video-music retrieval on Commercial-98K.

Keywords Cross-modal retrieval, Multi-modal, Music recommendation

1 Introduction
Background music (BGM) plays a vital role in advertise-
ments, which can help build brand image and stimulate 
consumption [1–3]. Many studies from psychology and 
brain science have been carried out on the effect fac-
tors of BGM. By observing the brain, these studies have 
proven that BGM is associated with faster response times 
and greater activations of frontoparietal areas during 
happy music, whereas sad music is associated with slower 
responses and greater occipital recruitment. When the 
emotion of BGM is in path with the advertisement, it can 
help catch the attention of customers [4] and makes the 
advertisement more memorable [5, 6]. However, with 

the expanding demand for e-commerce advertisements, 
manually selecting music one by one and clipping the 
music not only requires professional knowledge but is 
also time-consuming from the ever-growing music pool, 
which makes it a crucial task for automatically selecting 
suitable BGM.

Recommending appropriate music for a video can be 
considered a cross-modal retrieval task, aiming to search 
relevant data in different formats [7]. Previous stud-
ies have mainly focused on retrieval between visual and 
textual modalities, such as retrieving images or videos 
corresponding to a given textual description [8–10] or 
generating textual descriptions for a given image or video 
[11–13].

Among existing video-audio retrieval research, some 
studies focus on sound events localization [14, 15], which 
aims to localize the object in the video that produces 
the sound. Other studies concentrate on face-speech 
retrieval, which seeks the corresponding person for a 
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given voice [16–18]. However, there are several chal-
lenges in video-music retrieval. First, there are limited 
public datasets for video-music retrieval. The datasets 
used in existing studies are mainly music videos from 
YouTube. Second, there is no explicit correlation between 
the video and music.

Considering that music primarily depends on the vid-
eo’s emotion, many studies have relied on emotion tags 
[19, 20], which are time-consuming to annotate and may 
introduce subjective bias. Then, some studies use the 
content-based model to directly learn the correlation 
between video and music through deep neural networks 
(DNN) by calculating the Euclidean distance or cosine 
similarity between video and music features [21–23]. 
However, the music features are coarse in these studies, 
and emotion features may be ignored.

In this paper, to stress these challenges, we first estab-
lish a large-scale multi-modal dataset Commercial-98K 
from Alibaba, covering major product categories. Moreo-
ver, we propose a content-based video-music retrieval 
model YuYin. Instead of emotion tags, we extract emo-
tion-related features from music, which avoid the sub-
jective bias in annotating. Also, we introduce a weighted 
fusion module (WFM) to fuse the emotion features and 
the audio features for more fine-grained music represen-
tation, which can dynamically weigh different features, 
thus reducing information redundancy and enhancing 
the robustness of the model.

For the background music also relevant to the product 
category [24–26], we apply multi-task learning to train 
YuYin, including the cross-matching task and the cat-
egory prediction task. Specifically, for the cross-matching 
task, the text features of the category tag are used to help 
align video and music. For the category prediction task, a 
weight-shared classifier is used to predict the category of 
videos, music, and text.

The main contributions of this paper can be summa-
rized as follows:

• We establish a large-scale dataset, Commercial-98K, 
containing large-scale advertisements from Alibaba 
and covering major product categories.

• We propose a novel video-music retrieval model, 
YuYin, trained by multi-task learning, with categories 
included as labels to be predicted and as a supportive 
modality to align related video and music.

• We introduce a weighted fusion module to fuse emo-
tion features and audio features of music for fine-
grained music representations, learning to dynami-
cally balance different features through training.

The rest part of the paper is organized as follows. We 
discuss related work in the field of multi-modal datasets 

and video-music retrieval in Section 2. Then, we explain 
the process of building our dataset Commercial-98K, 
including the data sources and the details of the data 
processing, in Section  3. Our proposed model YuYin is 
depicted in detail in Section  4. Then, we introduce the 
experiment setup and analyze the results in Section  5. 
Finally, we present the conclusion in Section 6.

2  Related Work
2.1  Multi‑modal Dataset
Compared with single-modal datasets, multi-modal data-
sets contain more than one data form and are proven to 
have more advantages. DEAP [27] includes self-assess-
ment scores, audio, videos, facial expressions, and physi-
ological data for analyzing human emotional states, 
which shows the improvement in the effectiveness of 
human emotion analysis. VQA [28] containing 25,000 
images, 7600 questions, and 100,000 answers. Many 
studies on VQA achieve better results in the tasks of free-
form and open-visual question answering (Table 1).

In the field of cross-modal retrieval, researchers have 
built multi-modal datasets with different scales, modali-
ties, and sources for specific tasks (Table  1). YouTube-
8M [35] is released by Google, which is one of the largest 
multi-modal datasets. YouTube-8M contains 8,000,000 
videos and text annotations from Youtube, which are 
divided into 4800 categories, and each video contains an 
average of 1.8 tags. Based on Youtube-8M, there are many 
subsets like HIMV-200k [21], which contains 205,000 
music video-audio pairs. UGV [30] is a video dataset with 
emotion tags and is used for music recommendation. 
HoK400 and CFM400 [29] are two game video datasets 

Table 1 Multi-modal datasets created and adopted in existing 
studies

The modalities corresponding to abbreviations in the table are as follows: V, 
video; M, music; T, text

Dataset Scale Modal Content

V M T

CFM400 [29] 401 � � Game videos (Cross fire)

HoK400 [29] 427 � � Game videos (Honor 
of king)

UGV [30] 1265 � � � User generated videos

YouCook2 [31] 2000 � � Cooking videos on You-
tube

EmoMV [32] 5986 � � � Music videos with emo-
tion label

MSR-VTT [33] 10,000 � � Online videos with caption

TT-150K [34] 150,000 � � � Microvideos on Tiktok

HIMV-200K [21] 205,000 � � Music videos on YouTube

Youtbe-8M [35] 8,000,000 � � � Videos on YouTube

Commercial‑98K 98,071 � � � E-commerce ads
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established from the short video platform and add voice-
over in the dataset besides video and background music. 
TT-150K [34] is a large-scale dataset established from 
TikTok for background music recommendation, which 
contains 150,000 user-generated short videos corre-
sponding to 3000 pieces of background music.

However, the datasets for video-music retrieval are 
mainly music videos that are consciously made for the 
specific music, which makes the diversified demand dif-
ficult to achieve and can hardly fit the e-commerce sce-
nario and there are still problems of uneven length and 
quality of audio and video. Therefore, we establish a 
multi-modal dataset Commercial-98K, containing vid-
eos, music, and tags from the top store in the largest Chi-
nese e-commerce platform Alibaba.

2.2  Video‑music retrieval
Cross-modal retrieval (CMR) aims to retrieve data 
between multiple modalities [7]. While there have been 
many studies on visual-text retrieval along with pub-
lic datasets, such as Flicker [36], HowTo100M [37], and 
YouCook2 [31]. However, limited studies have focused on 
video-music retrieval (VMR).

Compared to visual-text retrieval, VMR is more chal-
lenging because both video and music contain rich infor-
mation, which makes the “modality gap” rather huge. To 
bridge the modality gap between video and music, in 
paper [19], they notice that videos have a strong connec-
tion with the emotion of the BGM and perform music 
retrieval by calculating the textual similarity of their 
emotion tags. However, these emotion tags are mainly 
annotated through crowd-sourcing, while the quality of 
labels can hardly be guaranteed and may introduce sub-
jective bias.

Then, Some studies use the content-based model to 
directly learn the correlation between video and music. 
The shallow model like CCA [38] has been used for cor-
relation analysis between different modalities, in which 
a linear projection is learned to map different modali-
ties in the same space and maximize their correlation. 
Based on CCA, DCCA [39] is proposed, which extends 
CCA with non-linear projections by DNN. In paper [40], 
a CCA-based model is used to match two modalities by 
maximizing the correlation between image and music 
features.

Recently, deep metric learning has been widely applied 
in cross-modal retrieval [41–45], which aims to learn a 
function to calculate the metric, e.g., euclidean distance, 
inner product, or cosine similarity between different 
modalities.

Normally, features of different modalities are 
extracted first and projected into a common space 

before calculating the metric [21, 23, 46, 47]. For video, 
the features are usually extracted by a pre-trained con-
volutional neural network (CNN) [22, 48]. However, the 
music representations are more complex. In [21], hand-
crafted features like Mel-spectrogram and MFCC are 
designed to represent music. Some other studies use 
pre-trained networks like VGGish [49] to extract audio 
features [23, 29, 34]. To obtain the emotion of music, In 
[22], they improve the feature extractor by pre-training 
on the emotion classification task. CMVAE [34] extract 
emotion features by OpenSmile [50] as well as audio 
features by VGGish, then they apply concatenation and 
principal components analysis (PCA) to obtain the final 
music features.

After feature extraction, this study employs pair-wise 
metric learning to explore the correlation between dif-
ferent modalities [37, 51, 52]. Specifically, positive and 
negative pairs are constructed for video and music, fol-
lowed by pair-wise loss functions, such as noise-con-
trastive estimation (NCE) [53] and Triplet-loss [54], 
to minimize the distance between positive pairs while 
pushing negative pairs away. Additionally, CEVAR [23] 
constrains the distance between the video and music 
from the same clip by cosine similarity loss. In the work 
of Liu et  al. [30], videos and music are first catego-
rized into positive and negative pairs based on whether 
they have the same emotion label, and a DNN is uti-
lized to align the two modalities. Moreover, CBVMR 
[21] utilizes intra- and inter-constraints to obtain more 
fine-grained information between video-music pairs. 
Generative methods are also applied in the field of 
CMR. Zhou et al. [55] propose an end-to-end model to 
generate sound for videos. Additionally, CMVAE [34] 
is based on a variational auto-encoder (VAE) to cross-
generate music and short videos, besides learning the 
correlation between different modalities in the latent 
space. However, most studies only consider videos and 
music, while the text also contains valuable information 
for video-music retrieval. Although CMVAE [34] fuses 
text features with video features, the performance is 
likely to degrade when the text is absent.

Therefore, we propose a content-based model YuYin, 
which learns the correlation between video and music 
by multi-task learning. For better music representa-
tion, YuYin extracts and fuses the emotion features and 
the audio features from music. Besides, text features 
are also included in multi-task learning which helps 
to gather the video and music in the same category in 
the common space. The text is only used as a support-
ive modality in the training phase and does not involve 
in the video-music retrieval, thus the missing text does 
not have any impact on the model.
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3  Dataset
The main aim of the Commercial-98K Dataset is to 
bridge the gap that there is no dataset that associates 
advertisements with background music and facilitates 
research regarding the discovery of matching patterns 
between music and advertisements. In this section, we 
in detail discuss the steps we took to collect advertise-
ments and background music from the e-commerce 
platform as well as the data preprocess methods. 
Then, we depict the statistics of the collected adver-
tisements and music.

3.1  Data collection
We collect advertisements from Taobao, one of the 
largest e-commerce platforms in China belonging to 
the world-famous company Alibaba, where customers 
can buy and sell numerous products. Compared with 
other e-commerce platforms, Taobao is a customer-to-
customer e-commerce platform, where both enterprises 
and individuals can open online stores to sell their prod-
ucts. The stores on Taobao upload their products with 
basic information as well as some images or videos and 
categorize them into different sections, which produces 
a vast amount of advertisements in different categories. 
However, the advertisement quality on Taobao differs 
vastly, for enterprises upload advertisements made by 
professionals while many individuals just casually make 
videos introducing their products. Also, many adver-
tisements only contain voice-over, which is not helpful 
and may introduce noisy data in video-music correla-
tion learning. To ensure the quality of our data, we pri-
marily collect advertisements from brand stores. These 
advertisements are designed, shot, and edited by pro-
fessionals with careful attention paid to the tight cor-
relation between the video and the background music. 
We ultimately gather 11,500 advertisements from 15 
categories on Taobao including food, children’s cloth-
ing, tablets, wedding dresses, women’s t-shirts, men’s 

t-shirts, men’s suits, video games, women’s suits, baby 
products, daily necessities, sports, down jacket, cosmet-
ics, mobile phones.

3.2  Data preprocess
With the collected 115,000 e-commerce advertisements, 
as shown in Fig. 1, we separate the audio and visual con-
tent of the video by moviepy to find some audios are pri-
marily voice-over or muted. To filter these voice-over or 
mute audios, we use a pre-trained time-domain convo-
lution network [56] to calculate the onset and duration 
proportion of music in audios and exclude data where 
music accounts for less than 50% of the total time. Finally, 
as in Fig. 2a, we retain 98,071 advertisements in 15 cat-
egories and find the count of advertisements categories 
varies significantly. Hence, we further manually merged 
the advertisements from similar categories, e.g., tablets, 
mobile phones, and video games are merged as electronic 
products.

Then we obtain four categories, namely electronic 
products (video games, mobile phones, tablets), baby 
products (baby care, children’s clothing), daily necessities 
(daily necessities, food, cosmetics), and clothing (sports, 
wedding dresses, women’s t-shirts, down jacket, women’s 
suits, men’s suits, men’s t-shirt).

3.3  Data statistics
As depicted in Fig.  2b, the 98,071 advertisements con-
sist of 4 categories, namely 43,841 on clothing, 25,860 on 
baby products, 26,824 on daily necessities, and 1546 on 
electronic products. Commercial-98K is still unbalanced, 
for the count of data in electronic products is notably 
lower. The reason may be that, compared with other cat-
egories, the number of brand stores on Taobao for elec-
tronic products is mainly famous brands at home and 
abroad, of which the number is limited. Due to copyright 
restrictions, we can not propose the raw data but the pro-
cessed Commercial-98K can be downloaded on https:// 
github. com/ Venat oral/ Comme rcial- 98K.

Fig. 1 The data process pipeline of Commercial-98K

https://github.com/Venatoral/Commercial-98K
https://github.com/Venatoral/Commercial-98K
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4  Proposed method
4.1  Problem definition
Let M stand for a collection of music and V for a col-
lection of advertisements. The video features v in V are 

extracted from the frame image sequence. Thus, it is pos-
sible to define a function f : M × V → S , where S stands 
for the similarities matrix and each sij ∈ S denotes the 
similarities between the ith piece of music ( mi ∈ M ) and 

Fig. 2 The data distribution of Commercial-98K before (left panel) and after (right panel) merging the categories
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the jth advertisement ( vj ∈ V  ). Given a new advertise-
ment v and the function f, the candidate music set C(m) 
from M can be selected by computing and scoring the 
similarities between v and each music clip m ∈ M.

4.2  Overall framework
As the framework of our proposed video-music retrieval 
model YuYin shown in Fig. 3, we extract emotion features 
and audio features from the music separately, while the 
video features and text features are extracted from the 
sampled image sequences and tags. Through the WFM, 
the emotion features and audio features are fused to be 
the music features. Then, different features are projected 
into the common space. Thus, multi-task learning is 
applied to compute the cross-matching loss as well as 
prediction loss to learn the correlation between adver-
tisements and music. Eventually, by computing the cosine 
similarities between video and music in the common 
space and ranking, the candidate music for the given 
advertisements can be selected.

4.3  Feature extraction
We use multiple pre-trained networks as feature extrac-
tors for different modalities. Furthermore, for stability, all 
feature extractors are frozen during training.

For music, we extract the frequency domain features 
from the music clip by torchaudio [57] as the input 
of pre-trained AST [58], to obtain the audio features. 
Besides, we apply OpenSmile [50] to extract emotion fea-
tures from music clips with its emobase feature set.

For video, we sample frames from the videos at a cer-
tain rate, then the sampled frames are fed into the pre-
trained inception [48] to get the frame-level features. 
Finally, inspired by the work [35], we use temporal global 
average pooling to obtain the video-level features.

For text, since the advertisements are from Chinese 
e-commerce platforms, we use Bert-wwm [59], which is 
pre-trained on the Chinese wiki, to extract the text fea-
tures from the tag of the advertisement.

4.4  Weighted fusion module
As shown in Fig. 4, we introduce a more flexible fusion 
method called the weighted fusion module to get the 
music features m from the audio features a and emotion 
features e. The dynamic weights ranging from 0 to 1 are 
learned for concatenated features through the linear and 
sigmoid layers. Eventually, to reduce the dimension of the 
weighted features, a linear layer is applied to output the 
music feature.

4.5  Multi‑task learning
YuYin is trained through multi-task learning. First, YuYin 
uses pair-wise metric learning to learn the direct relation-
ship between different modalities. We set videos and music 
clips from the same advertisement as the positive pairs and 
others as the negative pairs. With the positive and negative 
video-music pairs constructed, NCE loss is applied to learn 
the correlation between the video-music pairs, as described 
in Eq. (1), where x and y stands for two different modalities, 
P(x) means the positive data of x, B is the batch size, and τ 

Fig. 3 The framework of our proposed YuYin for background music recommendation of e-commerce advertisements. In detail, a WFM 
fuses emotion features and audio features as music features. Then the extracted features are projected in the common space for multi-task 
learning. The video zv , music zm , and text projections zt in the common space are pair-wise cross-matched to compute NCE loss and pass 
through a weight-shared classifier to get the prediction probabilities pv , pm , and pt , which will be further used to compute cross-entropy loss 
with the true label as the prediction loss
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is a hyper-parameter. Besides, the text features are included 
to align video and music. Specifically, the text features of 
the tag are extracted and projected into the common space 
to match the corresponding videos and music by Eq. (1).

Equation (2) illustrates how video projections zv , music 
projections zm , and text projections zt yield the cross-
matching loss Lcm , where β is a hyper-parameter used to 
regulate the video-music matching loss. Through opti-
mization, the distance between the positive video-music 
pairs in the common space steadily decreases, while the 
distance between the negative pairs keeps growing.

Additionally, we provide a category prediction task to 
aid YuYin in learning the relationship between video and 
music in the same product category. The prediction loss 
Lpre is computed as Eq. (4), where CE is the cross-entropy 
loss and y is the ground-truth label. Specifically, a weight-
shared classifier predicts the label of various modalities 
in the common space separately. By optimizing Lpre , the 
correlation between the videos and music with the same 
label is better exploited, reducing the distance between 
positive video-music pairs.

Eventually, the loss L consists of cross-matching loss 
Lcm and prediction loss Lpre . The α is a hyper-parameter 
to control the impact of prediction loss.

(1)NCE(x, y) = − log
y∈P(x) e

xT y/τ

B
i=1 e

xT y/τ

(2)
Lcm = β ∗ NCE(zv , zm)+ NCE(zv , zt)

+ NCE(zm, zt)

(3)CE(x, y) = −
∑

y log(x)

(4)Lpre = CE(pv , y)+ CE(pm, y)+ CE(pt , y)

5  Experiment
5.1  Experiment setup
For video-music retrieval methods can only retrieve 
music from the music pool without editing, which may 
cause misjudgment in subjective evaluation because 
listeners can hardly know how the music will be used 
as BGM of the given video, we only conduct objective 
experiments on Commercial-98K. We conduct experi-
ments on Commercial-98K, with 95,607 data serving as 
the training set, 1464 as the testing set, and the remaining 
1000 as the evaluation set. In addition, each set includes 
all of the dataset’s categories.

YuYin is implemented in Pytorch with an embedding 
dimension of 1024 and the common space projection 
using a MLP with two layers of dimensions {512, 256} and 
activation function ReLu. α in Eq. (5) is set to 0.1, while β 
in Eq. (2) is set to 3.0. YuYin is trained on RTX3090 for 
30 epochs using the Adam optimizer, with a batch size of 
1024 and a learning rate of 0.0001. Following each epoch, 
the model is evaluated on the evaluation set to deter-
mine the evaluation loss, which is observed to prevent 
overfitting.

5.2  Evaluation metrics
As the standard cross-modal retrieval metric, Recall@K 
is used to validate the performance of YuYin on the video-
music retrieval task [60]. As shown in Eq. (6), Recall@K 
denotes the top K retrievals obtained from the similarity 
list retrieved by the model, sorted in descending order 
S[  : K] as a ratio of the number of hits to the number of 
queries Nquery.

(5)L = Lcm + α ∗ Lpredict

Fig. 4 The weighted fusion module (WFM) in YuYin, which learns to apply dynamic weights for audio and emotion features and output the music 
feature
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5.3  Performance comparison
In this study, we compare YuYin with several video-
music retrieval methods below:

• CCA [38]: CCA uses a linear projection and maxi-
mizes the correlation between the latent variables of 
video and music during training.

• DCCA [61]: DCCA learns the projection for each 
modality and maximizes their correlation through 
deep learning.

• CEVAR [23]: CEVAR uses two sets of fully-con-
nected networks (FC) to extract video features and 
audio features in Youtube-8M to calculate cosine loss 
and predict the label of video as the prediction loss. 
We maintained its strategy to use the tags in Com-
mercial-98K for its prediction loss.

• CBVMR [21]: CBVMR is a content-based video-
music retrieval model, which introduces intra- and 
inter- modality constraints on the audio features and 
the video features.

• CMVAE [34]: CMVAE is based on the VAE archi-
tecture, which fuses the video features and text fea-
tures through a Product-of-Expert (PoE) module 
and projects the fused video and music features into 
a latent space to compute reconstruction loss and 
cross-matching loss for training. For comparison, we 
retrain CMVAE on Commercial-98K and use the tags 
in Commercial-98K as the text features for fusion.

• MRCMV [29]: MRCMV fuses voice-over with video 
features through a multi-head attention module 
and uses two separate self-attention modules for 
the video and music features. In our comparison, 
for there is no voice-over in Commercial-98K, we 
replace the voice-over features with our text features.

(6)Recall@K =
∑

S[:K ]

hits

Nquery

• Random: randomly recommend music for the given 
video.

The results are shown in Table 2, which indicates that 
YuYin outperforms other methods on Commercial-98K. 
The performance of CCA indicates that the correlation 
between the videos and music is difficult to learn with a 
linear projection. CBVMR has inter- and intra- modal-
ity constraints, but the hand-crafted audio features can 
represent limited information. Although CEVAR intro-
duces labels for prediction besides computing the cosine 
loss between the videos and music, fine-grained informa-
tion of video and music can hardly be exploited through 
two sets of fully connected networks. The performance 
of CMVAE on video-music retrieval and music-video 
retrieval is equally well, which may be attributed to the 
cross-matching and reconstruction loss used in the 
training stage to help it catch more correlation between 
the videos and music. However, we also find that even 
though we replace the voice-over in MRCMV with our 
text features, it also shows considerable results. The rea-
son may be that the multi-head attention module and the 
self-attention module in MRCMV refine the video fea-
tures and music features, which makes MRCMV apply 
more task-related information.

5.4  Ablation study
In this section, we explore the specific impact effects of 
each component in YuYin. First, we investigate the effect 
of text and emotion in YuYin by eliminating and retrain-
ing. Then, we replace WFM in YuYin with traditional 
fusion approaches. Moreover, we investigate the effect 
of multi-task learning on the video and music features in 
the common space through feature visualization.

5.4.1  Effect of emotion and text
We verify the effect of each modality by eliminating the 
text features (YuYin w/o T) and the emotion features 

Table 2 The results of YuYin and other compared methods on Commercial-98K dataset

Methods Video → music Music → video

R@10 R@15 R@20 R@25 R@10 R@15 R@20 R@25

Random 0.017 0.023 0.026 0.030 0.013 0.021 0.026 0.033

CCA [38] 0.255 0.283 0.299 0.324 0.236 0.260 0.279 0.298

DCCA [61] 0.279 0.328 0.364 0.393 0.265 0.300 0.329 0.361

CEVAR [23] 0.334 0.362 0.378 0.389 0.335 0.359 0.372 0.392

CBVMR [21] 0.343 0.378 0.405 0.423 0.297 0.329 0.355 0.387

CMVAE [34] 0.343 0.379 0.408 0.442 0.339 0.377 0.414 0.435

MRCMV [29] 0.359 0.404 0.431 0.455 0.333 0.375 0.432 0.435

YuYin 0.403 0.439 0.471 0.501 0.376 0.423 0.456 0.478
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(YuYin w/o E), and YuYin pure only uses audio and video 
features. When eliminating emotion features, the related 
WFM is also removed. Furthermore, when eliminating 
text features, we also remove its related cross-matching 

loss while keeping the prediction loss. From the results 
in Table 3, removing either emotion or text decreases the 
performance of YuYin, among which the emotion fea-
tures have the greatest impact on YuYin. The result may 

Table 3 The results of YuYin that eliminating modalities on Commercial-98K

Methods Video → music Music → video

R@10 R@15 R@20 R@25 R@10 R@15 R@20 R@25

YuYin pure 0.370 0.400 0.424 0.443 0.345 0.378 0.400 0.417

YuYin w/o E 0.374 0.403 0.430 0.453 0.345 0.377 0.404 0.424

YuYin w/o T 0.368 0.406 0.445 0.477 0.358 0.390 0.405 0.428

YuYin 0.403 0.439 0.471 0.501 0.376 0.423 0.456 0.478

Fig. 5 The visualization of music features from YuYin (the left panel) and YuYin w/o E (the right panel), of which the dimension is reduced to 2 
by t-distributed stochastic neighbor embedding (t-SNE)
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be attributed to that the emotion features extracted by 
OpenSmile have more intuitive meaning than the audio 
features extracted by AST. However, we also find the text 
features have less impact on the performance of YuYin. 
To explore the reason why the text features can hardly 

improve the performance when eliminating the emo-
tion features, we randomly extract features from 1000 
music in each category in Commercial-98K and reduce 
the dimension of music features to 2 by t-distributed sto-
chastic neighbor embedding (t-SNE) for visualization. As 

Table 4 The results of YuYin with different fusion approaches on Commercial-98K

Methods video → music music → video

R@10 R@15 R@20 R@25 R@10 R@15 R@20 R@25

YuYin (Add) 0.376 0.402 0.423 0.445 0.348 0.381 0.402 0.425

YuYin (Concat) 0.374 0.406 0.432 0.451 0.344 0.378 0.410 0.428

YuYin (WFM) 0.403 0.439 0.471 0.501 0.376 0.423 0.456 0.478

Fig. 6 The KDE analysis of the similarity between the positive and negative samples
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shown in Fig. 5, we can observe that the music features 
become more discriminative with the emotion features, 
while the music features in YuYin w/o E are sparse. Then, 
we analyze that the reason may be that the text features 
only act as a supportive role in aligning video and music 
in the training phase, and the sparse music features make 
it hard for text features to align other modalities, result-
ing in the performance of YuYin pure comparable to that 
of YuYin w/o E. In addition, the results further prove the 
effect of emotion features, the reason why audio features 
are less different compared with emotion features may 
be attributed to that AST is frozen during the training 
phase, while OpenSmile extracts emotion features from 
its fixed rules.

5.4.2  Effect of WFM
In the impact study of the WFM, we compare it with the 
traditional fusion methods, including Concat and Add.

We replace the WFM with Concat or Add respectively. 
For YuYin (Concat), the multi-modal features are concat-
enated and fed into the subsequent network. For YuYin 
(Add), due to the inconsistency of the feature dimen-
sions, different features are first transformed to the same 

dimension by a linear projection and then summed up 
for fusion.

As shown in Table 4, YuYin (WFM) performs the best, 
which may be attributed to WFM refining the data pro-
cessing granularity of the model by learning to weight 
different modalities in training, while the Concat and the 
Add method can hardly complete the targeted extraction 
of the data, which leads to more interference informa-
tion in the fused data and limits the model performance. 
Furthermore, the results of YuYin (Add) may result from 
the missing information in the linear projection and sum-
ming up compared with direct concatenation in YuYin 
(Concat).

5.4.3  Effect of multi‑task learning
To investigate the effect of multi-task learning, as shown 
in Fig.  6, kernel density estimation (KDE) is applied to 
visualize the similarity in video-music pairs to demon-
strate how YuYin distinguishes between positive and 
negative video-music pairs in cross-matching. The results 
prove the similarity between positive video-music pairs is 
significantly bigger than that of negative pairs in the com-
mon space.

Fig. 7 Visualization of the video and music projections in the common space with dimension reduced to 2 by t-SNE
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Furthermore, to explore the effect of the prediction 
task, as shown in Fig. 7, we observe the video and music 
features from YuYin with and without the prediction task, 
respectively. In detail, we use t-SNE to reduce the dimen-
sion and visualize the video and music features from each 
category in Commercial-98K. It shows that the video pro-
jections in the common space have a more distinct dis-
tribution with the prediction task. However, we also find 
there is no clear pattern in the distribution of the music 
features. The reason may owe to the lack of a fixed para-
digm for selecting the background music, and even for the 
same advertisement, the music can be influenced by per-
sonal preferences, music popularity, and other factors.

6  Conclusion
To reduce the labor in manually selecting the background 
music for e-commerce advertisements. We first establish a 
large-scale dataset Commercial-98K from Alibaba, contain-
ing background music, videos, and product category tags 
of 98,071 advertisements. Then, we propose a video-music 
retrieval model YuYin with a novel WFM to fuse audio and 
emotion features and is trained by multi-task learning to 
cross-match video, music, and text as well as predict the cate-
gory of video and music through a weight-shared classifier. We 
conduct experiments to find YuYin outperforms other models 
in video-music retrieval. and demonstrate the effect of multi-
modal and WFM in YuYin. Moreover, through visualization, 
we investigate the data distribution of each modality to prove 
YuYin can distinguish positive and negative video-music pairs 
in the common space. In the future, based on Commercial-
98K, we will continue to carry out studies on the more effect 
factors besides emotion in video-music retrieval and replace 
our multi-modal feature extractors with the novel network.
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