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Abstract 

Predominant source separation is the separation of one or more desired predominant signals, such as voice or lead-
ing instruments, from polyphonic music. The proposed work uses time-frequency filtering on predominant source 
separation and conditional adversarial networks to improve the perceived quality of isolated sounds. The pitch tracks 
corresponding to the prominent sound sources of the polyphonic music are estimated using a predominant pitch 
extraction algorithm and a binary mask corresponding to each pitch track and its harmonics are generated. Time-fre-
quency filtering is performed on the spectrogram of the input signal using a binary mask that isolates the dominant 
sources based on pitch. The perceptual quality of source-separated music signal is enhanced using a CycleGAN-based 
conditional adversarial network operating on spectrogram images. The proposed work is systematically evaluated 
using the IRMAS and ADC 2004 datasets. Subjective and objective evaluations have been carried out. The recon-
structed spectrogram is converted back to music signals by applying the inverse short-time Fourier transform. The 
intelligibility of separated audio is enhanced using an intelligibility enhancement module based on an audio style 
transfer scheme. The performance of the proposed method is compared with state-of-the-art Demucs and Wave-U-
Net architectures and shows competing performance both objectively and subjectively.
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1  Introduction
In general, the acoustical environment does not offer 
sound sources alone. The so-acquired auditory sensory 
information consists of many sound sources that are 
likely to overlap in both time and frequency. The basis for 
the analysis of the acoustic scene is the capacity of human 
perception to resolve this acoustical mixture. Our human 
auditory system is capable of distinguishing the constit-
uent sounds in a speech or music mixture, even if they 
overlap with time and frequency. Since music represents, 

in general, a multi-source acoustical environment, the 
here-described data properties indeed represent the 
main complexity involved in this method. Cherry [1] 
coined the problem as the cocktail party problem by 
exemplifying a conversational situation where several 
voices, overlapping in time, are embedded in a natural 
acoustical environment including other stationary or 
dynamic sound sources. The listener, however, can focus 
on the targeted speech stream and transform the acousti-
cal data into semantic information. But this is a difficult 
task for computers to automatically do.

Music is viewed as a different issue than other types 
of source separation. This is because many factors make 
music uniquely difficult. Music sources are highly corre-
lated and it is mixed and processed non-physically and 
non-linearly. Reverberation, filtering, and other non-
linear signal processing techniques make music separa-
tion difficult. This is a problem because you rarely know 
what processing has been applied to the source or the 
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mix in an end-to-end system. Since sound source sepa-
ration is the end goal, listened to by users who can expect 
high-quality results, it is of utmost importance that the 
system’s results sound good enough for these users. The 
goal of predominant source separation is to separate 
prominent instruments including the human voice from 
a song, without adding any noise. The separation of lead 
or accompaniment from the polyphonic song, that is the 
real-world scenario is a relatively difficult task [2].

The ability to interact with the individual sound sources 
especially lead vocals in a music recording would enable 
diverse applications such as music up mixing and remix-
ing, automatic karaoke, and object-wise equalization [3]. 
Also, we can make music recommender systems to listen 
to the predominant instrument or vocals alone. All these 
are possible by predominant source separation models.

1.1 � Related works
Blind source separation techniques like independent 
component analysis (ICA) [4], non-negative matrix fac-
torization (NMF) [5], and spectral filtering [6] are some 
of the initial attempts in sound source separation. NMF 
is a common method by which the spectrogram of a 
mixed signal is factored. The problem with this approach, 
instead of multiplying two non-negative fundamental 
matrices and a weight matrix, is that we might get a non-
negative linear combination of the trained basis vectors 
as the source signal. Thus, it may degrade the perfor-
mance of the segregation approach [5]. Spectral filtering 
techniques such as time-frequency masking are an easy 
way to separate speech sources, especially when they are 
sparse and non-overlapping [6]. These methods cannot 
be directly applied for music source separation because 
of the peculiar properties of music, and this required the 
development of specific music algorithms that have prior 
knowledge about source structure and mixing parameters 
[7]. Moreover, a typical commercial music mix violates all 
the classical assumptions of ICA. Li and Wang [8] pro-
posed a comp filtering approach to use a vocal/non-vocal 
classifier with a predominant pitch detection algorithm 
for detecting pitch contours from vocals. Ryynanen et al. 
[9] proposed a method to separate accompaniment from 
polyphonic music using melody transcription and sinu-
soidal modeling is employed to estimate, resynthesize, 
and separate the lead vocals from the musical mixture 
for karaoke applications. In [10], predominant melodic 
source is tracked by borrowing concepts from graph 
theory and computational auditory scene analysis.

Recently, deep neural networks have been applied to 
speech enhancement, segmentation, and source separa-
tion by estimating complex masks corresponding to each 
source. Huang et  al. [11] and Uhlich et  al. [12] were the 
first to propose deep neural networks like recurrent neural 

networks (RNN) and long short-term memory (LSTM) 
for the singing voice separation task. A deep neural net-
work-based framework to classify the spectra of the mixed 
signal into each possible source type is proposed in [13]. 
The main limitation of the methods using time-frequency 
masking is that most of them synthesize using masked 
spectrograms with the original phase [14] of the mixture, 
which imposes an upper bound on the performance. Luo 
et  al. proposed time-domain audio separation network 
(TasNet) overcome these limitations [14]. Mimilakis et al. 
proposed a hybrid structure with skip connections and 
recurrent inference of time-frequency mask to separate 
the lead instrument from jazz remix recordings [15].

Generative adversarial network (GAN)-based source 
separation is proposed in [16], where a Wasserstein 
GAN generative model is trained to recover sources from 
mixtures. Luo and Mesgarani [17] propose a generative 
network that directly models signals in the time domain 
using a 1-D convolutional encoder/decoder framework 
and perform source separation on the non-negative 
encoder outputs. A 1-D convolutional network based on 
successive downsampling and resampling is proposed 
in [18] for universal speech separation. SepNet, a DNN, 
was developed to predict the separation matrix for [19] 
speech separation. In [20], an adaptation of the U-Net 
architecture to the one-dimensional time domain to per-
form end-to-end audio source separation is performed. 
Recently, adversarial networks have often been used for 
speech synthesis [21]. In the proposed method Cycle-
GAN, an adversarial network is used for separating the 
predominant source from the polyphonic mix. The pro-
posed method employs a different approach using time-
frequency masking, and perceptibility is enhanced by 
using generative adversarial networks.

1.2 � Motivation
Existing techniques for source separation are signal 
processing models based on prior knowledge about the 
instrument class, and they faced difficulties when try-
ing to differentiate instruments with similar frequency 
content and failed to provide a clear instrument identi-
fication. Many advances have been made in source sepa-
ration especially in the last decade, after deep learning 
techniques started being used. Generative adversarial 
networks (GANs) have recently been shown to be effi-
cient for speech enhancement [22]. Also, it has been 
already demonstrated that GANs can effectively be used 
for suppressing additive noise and improving perceptual 
quality metrics [23, 24]. GAN explores different ways of 
learning useful encodings of the music signals that would 
facilitate the separation without any prior knowledge 
about music data. It motivated us to employ a GAN-based 
scheme for the proposed work.
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1.3 � Problem statement
Consider a stereo polyphonic signal x ∈ R

2×N , where N  
denotes the number of samples, and let N ∈ S

∗ . This sig-
nal consists of a combination of source signals sj ∈ R

2×N , 
where j belongs to the set {1, 2, . . . , J } , with J ∈ S

∗ being 
the number of sources. Mathematically, this can be 
expressed as:

Let us denote the predominant signal as si , where i 
takes values from {1, 2, . . . , I} , and I signifies the count of 
predominant signals. The primary objective of the task 
of predominant audio source separation is to discern the 
source signals si based exclusively on the observed mix-
ture signal x.

The proposed method is discussed in Section 2. Section 3 
presents the performance evaluation followed by results 
and analysis in Section 4. Finally, the paper is concluded in 
Section 5.

2 � Proposed method
In the proposed method, binary masks are generated 
from the estimates of the pitch tracks. This binary mask 
is then used to compute the masked predominant spec-
trogram from the mixed spectrogram. To generate the 
enhanced spectrum, an image-to-image transformation 
is applied to the masked dominant spectrograms using 
CycleGAN. Finally, the spectrum and mixed-signal phase 
are used to synthesize the dominant source of the con-
stituents. The overall process is shown in Fig. 1.

x =

J

j=1

sj

2.1 � Predominant pitch tracking and binary masking
The predominant pitch tracking algorithm is a salience-
based melody extraction method originally designed 
to extract the predominant melody from polyphonic 
music, as well as monophonic signals [25]. For the cur-
rent experiment, the predominant pitch is extracted from 
the audio recordings using MELODIA. This algorithm 
outputs a time series (sequence of values) with the per-
ceived melody’s instantaneous pitch value (in hertz). The 
approach is based on creating and characterizing pitch 
contours and time-continuous sequences of pitch can-
didates grouped using auditory streaming cues [25]. By 
studying the feature distributions of melodic and non-
melodic contours, they defined a set of rules for distin-
guishing between the contours that form the melody and 
the contours that should be filtered out. These rules are 
used to mitigate the challenges related to voice activity 
detection, the possibility of octave errors, and the pres-
ence of strong secondary melodic components [25].

Binary masks are generated based on pitch tracks 
obtained from predominant pitch tracking algorithms 
and are then applied to the spectrogram of the polyphonic 
signal to obtain the dominant masked spectrogram. 
Spectrograms with enhanced pitch track information 
are plotted with the librosa.piptrack function. The func-
tion librosa.piptrack(pitches, magnitudes) returns two 2D 
arrays with frequency and time axes. The “pitches” array 
gives the interpolated frequency estimate of a particular 
harmonic, and the corresponding value in the “magni-
tudes” array gives the energy of the peak. Figure 2 repre-
sents the polyphonic spectrogram of music signal from the 
dataset with pitch tracks highlighted and corresponding 

Fig. 1  Schematic diagram of the flow for the proposed CycleGAN-based model
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binary mask. Phase information is preserved for recon-
struction at the end.

The time-frequency masking approach takes advantage 
of the sparsity of mixed speech signals to perform source 
separation. The time-frequency representations of the 
source will no longer overlap, improving overall perfor-
mance. The sparseness of the signal encourages the con-
cept of using clustering techniques, including mean-shift 
algorithms. These methods assume that the audio sources 
are separated in the time-frequency domain. That is, at 
any given time and any given frequency, only one source 
is transmitted and the others are zero, a condition known 
as W-disjoint Orthogonality [6]. Our approach does not 
claim such constraints and relies on a generative adver-
sarial network to improve the perceptual quality of sepa-
rated music signals after time-frequency masking.

2.2 � Cycle generative adversarial network (CycleGAN)
GANs use pretraining [26] to synthesize realistic exam-
ples from the dataset. These are generative models, 
learning to map samples i from a previous distribu-
tion I  to samples j from another distribution J  . This 
is one of the training examples. The generator (G) and 
discriminator (D) are two components of GAN. Gen-
erator G performs mapping using adversarial training. 
Discriminator D classifies input samples as real or fake. 
Generator G attempts to provide samples from the dis-
tribution of interest, and the discriminator attempts to 
predict whether the samples came from the actual dis-
tribution or were produced by the generator. D tries to 
find realistic features of the input, and G transforms the 
samples to be more realistic by changing parameters 
during backpropagation. The generator and discrimi-
nator are trained simultaneously. With this, the gen-
erator eventually learns to perfectly approximate the 
underlying distribution, and the discriminator has to 

guess randomly. However, given enough capacity, the 
network can map the same set of input images to any 
random permutation of images in the target domain. In 
this case, each learned mapping can induce an output 
distribution that matches the target distribution. For 
this reason, opponent defeat alone cannot guarantee 
that the learned function can map each input image to 
the desired output image. To regularize the model, the 
authors introduce a cycle consistency constraint. If you 
transform from the source distribution to the target 
distribution and back to the source distribution, you 
need to take samples from the source distribution [27].

A conditional model can be modeled from GANs, if 
both aforesaid components are conditioned on addi-
tional information such as label/ data from other 
modality y. Pairing is achieved to make input and 
output share some common features. This is done by 
inputting y to the components as additional input lay-
ers. The prior input noise pz(z) and y are combined in a 
joint hidden representation in the generator. In the dis-
criminator, x and y are presented as inputs to a discrim-
inative function [28]. However, to ensure that there is 
a meaningful relation between these images, they must 
share some feature, features that may be used to map 
this output image back to the input image, so there has 
to be another generator that must be capable of map-
ping back this output image again to the original input. 
The job of the discriminator is to distinguish between 
the original image and the generated image, while the 
generator would like to ensure that those images get 
accepted by the discriminator, so it will try to gener-
ate images that are very close to the original images. 
In reality, the generator and discriminator are play-
ing a game whose Nash equilibrium is achieved when 
the generator’s distribution becomes the same as the 
desired distribution.

Fig. 2  Spectrogram of polyphonic music signal and corresponding binary mask
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Let the CycleGAN use the training patterns {ai}N1 ∈ A 
and {bi}N1 ∈ B  to convert observation image A and ran-
dom noise vector N to B . Consider two discriminators 
DA and DB . During training, DA learns the mapping 
function G : A → B so that the image produced by 
G(A) is indistinguishable from B. DA is intended to dis-
tinguish between the image a and the translated image 
F(b). The main purpose of DB is to distinguish between 
images b and G(a). For that it learns the inverse function 
F : B → A such that F(G(A)) = A . To enforce the condi-
tions F(G(A)) = A and G(F(B)) = B , cycle consistency 
loss is enabled in training.

The objective is [27]:

where,

lGAN (G,DB,A,B) and lcyc(G, F) indicate adversarial loss 
and consistency loss [27]. G produces an image G(a) that 
mimics the image in domain B, while DB distinguishes 
between translated image G(a) and b . The training pro-
cess is shown in Fig.  3. In the proposed experiment, 
a represents the masked predominant spectrogram b 
denoting the corresponding ground-truth spectrogram 
in the training phase.

2.3 � Cycle GAN architecture
The proposed model comprises 4 components, two for 
generators and discriminators. The model is designed 
to process images of size 256 × 256. Discriminators 
are labeled as Domain-A (original) and Domain-B 

(1)l(G, F ,DA,DB) = lGAN (G,DB,A,B)+ lGAN (F ,DA,B,A)+ �lcyc(G, F),

(2)lGAN (G,DB,A,B) = Eb∼pdata(b)
[

logDB(b)

]

+ E
a∼pdata(a)

[log(1− DB(G(a))]

(3)lcyc(G, F) = E
a∼pdata(a)

[� F(G(a))− a �1]+ E
b∼pdata(b)

[� G(F(b))− b �1].

(predominant). Discriminator resembles PatchGAN 
where each output prediction of the model maps to a 
70 × 70 patch of the input image. Convolutional-Instan-
ceNorm-LeakyReLU layers are used in the discriminator 
for the processing. InstanceNormalization is used which 
involves standardizing the values on each output feature 
map, rather than across features in a batch as in Batch-
Normalization. The input to the model is 256 × 256 
images and outputs a patch of predictions. Least-squares 
loss (L2)-based optimization is adopted with a weight-
ing parameter of 0.5. Figure  4 represents the internal 
architecture of cycleGAN with nine resnet blocks. The 
generator which is based on an encoder-decoder-schema 

outputs pixel values with the shape as the input and 
pixel values are in the range [− 1, 1]. The generator first 
downsamples the input image to a bottleneck layer, then 
interprets the encoding with several Resnet layers that 
use skip connections. Later, the process is reversed to 
the size of the output image. 3 × 3 filters and 1 × 1 stride 
have been used in the CNN of the Resnet blocks. It is 
worth noting that the input to the block is concatenated 
channel-wise to the output of the block. The generator 
is updated as a weighted average of the 4-loss values, 
specifically adversarial loss, identity loss, forward cycle 
loss, and backward cycle loss. The weighting parameter 
lambda has been selected as 10 for the forward and 
backward cycle loss of adversarial loss, and a fraction of 

Fig. 3  CycleGAN training with cycle-consistency loss function [27]
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lambda (0.5) has been selected as a weighting factor for 
identity loss.

All generators and discriminators are optimized with 
Adam optimizer with learning rate (2e−4), and the batch 
size is chosen to be 1. During training for the first 100 
epochs, the learning rate is fixed to 2e−4, and for the last 
100 epochs, the learning rate is linearly annealed from 
2e−4 to 2e−6. Tables 1 and 2 represent the model sum-
mary of the discriminator and generator used in the 
proposed method.

2.4 � Intelligent enhancement module
An intelligent enhancement module utilizing style trans-
fer [29, 30] is employed that merges the principles of style 
transfer with artificial intelligence to elevate the aesthetic 

and quality of separated audio. The core of style transfer  
involves transposing the distinct visual or auditory style 
of one piece of content onto another, all the while pre-
serving the fundamental structure of the content. The 
module aimed at enhancing intelligibility utilizes a single- 
layer CNN equipped with 4096 filters, followed by  
ReLU activation for extracting high-level features. The 

Fig. 4  CycleGAN Generator architecture

Table 1  Proposed architecture for discriminator

Input size Description

3× 256 × 256 Input spectrogram

64 × 128 × 128 4 × 4 Conv, 64 filters, stride 2, pad 1

64 × 128 × 128 Leaky ReLU ( α=0.2)

128 × 64 × 64 4 × 4 Conv, 64 filters, stride 2, pad 1

128 × 64 × 64 Instance normalization

128 × 64 × 64 Leaky ReLU ( α = 0.2)

256 × 32 × 32 4 × 4 Conv, 64 filters, stride 2, pad 1

256 × 32 × 32 Instance normalization

256 × x32 × 32 Leaky ReLU ( α = 0.2)

512 × 31 × 31 4 × 4 Conv, 512 filters, stride 1, pad 1

1 × 4 × 4 4 × 4 Conv, stride 1, pad 1

Table 2  Proposed architecture for generator

Input size Description

3 × 256 × 256 Input spectrogram

64 × 256 × 256 7 × 7 Conv, 64 filters, stride 1, pad 3

64 × 256 × 256 Instance normalization

64 × 256 × 256 ReLU

128 × 128 × 128 3 × 3 Conv, 128 filters, stride 2, pad 1

128 × 128 × 128 Instance normalization

128 × 128 × 128 ReLU

256 × 64 × 64 3 × 3 Conv, 256 filters, stride 2, pad 1

256 × 64 × 64 Instance normalization

256 × 64 × 64 ReLU

256 × 64 × 64 9 consecutive Resnet blocks, 256 filters

128 × 128 × 128 3 × 3 Conv, 128 filters, stride 2, pad 1

128 × 128 × 128 Instance normalization

128 × 128 × 128 ReLU

64 × 256 × 256 3 × 3 Conv, 64 filters, stride 1, pad 3

64 × 256 × 256 Instance normalization

64 × 256 × 256 ReLU

3 × 256 × 256 7 × 7 Conv, stride 1, pad 3

3 × 256 × 256 Instance normalization

3 × 256 × 256 Tanh
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initial step involves converting the raw audio into a spec-
trogram through a short-time Fourier transform (STFT). 
Each input audio segment is divided into T frames using 
a Hanning window of n samples (2048) and a hop size of 
n/2, effectively representing the spectrogram as an image 
with T channels and n samples per channel. To extract 
content and style features, a random CNN is employed. 
The output of this random CNN is used to compute the 
Gram matrix [29], which describes the style of the audio. 
Subsequently, an iterative optimization process is applied 
to gradually minimize both content loss and style loss.

Content loss is determined by measuring the squared 
error between the content features derived from the con-
tent input and the features obtained from the random 
input. In contrast, style loss is calculated by quantifying 
the squared error between the Gram matrix computed 
from the style audio sample and the Gram matrix derived 
from the features of the random input. The overall loss 
is then computed as a linear combination of the content 
loss and the style loss. This total loss guides the optimi-
zation process, progressively aligning the output with the 
desired content and style characteristics.

3 � Performance evaluation
3.1 � Dataset
IRMAS and ADC 2004 datasets are used for perfor-
mance evaluation. IRMAS dataset [31] containing sepa-
rate training and testing sets is used for the evaluation. 
All audio files in the IRMAS dataset are in a 16-bit ste-
reo .wav format with a sampling rate of 44,100 Hz. The 
training data are single-labeled and consist of 6705 
audio files with excerpts of 3 s from more than 2000 dis-
tinct recordings. On the other hand, the testing data are 
multi-labeled and consist of 2874 audio files with lengths 
between 5 s and 20 s and contain multiple predominant 
instruments.

ADC 2004 dataset [32] containing 20 audio clips with 
a sampling rate of 44,100 Hz and include five genres, 
namely daisy, jazz, opera, MIDI, and pop, are used for 
evaluation. This dataset consists of 20 excerpts, with the 
average length of each song being 20 s.

3.2 � Evaluation methodology
The subjective and objective evaluations were carried 
out. According to this evaluation procedure, a source sig-
nal estimation sigest can be decomposed as follows:

where sigorg is the orginal clean signal, errspat is the error 
due to spatial distortions, errinter is the error due to 
interference and errartif  is the error due to artifacts. The 
relative amounts of spatial distortion, interference, and 
artifacts are measured using the following three energy 

(4)sigest = sigorg + errspat + errinter + errartif

ratio criteria expressed in decibels (dB) namely: the 
source image to spatial distortion ratio (ISR), the source 
to distortion ratio (SDR), and the sources to artifacts 
ratio (SAR) [33].

These metrics were computed using functions in the 
“Nussl” library in Python upon all the testing data. The 
class-wise average and maximum values are taken for 
objective evaluation. SAR is interpreted as the quantity of 
other sources that can be heard in a source estimate. SDR 
reveals the overall quality of each estimated source and is 
interpreted as the amount of unwanted artifacts a source 
estimate has in relation to the true source [33, 34].

A perception test is conducted by sharing a subset 
comprising 26 audio samples with 20 listeners. All the 
listeners were presented with a polyphonic signal and 
the corresponding predominant source was separated 
for opinion grading. It is measured using five opinion 
grades, namely excellent (5), very good (4), good (3), 
poor (2), and very poor (1). Listeners are asked to grade 
by choosing any of the opinion grades. Direction has 
been given to listeners to grade each synthesized audio 
file by considering the effect of cross-talks and break 
sound effects. Sound quality relates to the number of 
artifacts or distortions that you can perceive. Interference 
describes the loudness of the predominant source com-
pared to the loudness of the accompaniments. For exam-
ple, “strong interference” indicates a strong contribution 
from accompaniments, whereas “no interference” means 
that only a predominant source is present in separation. 
Interference does not include artifacts or distortions that 
you may perceive. The total mean opinion score (MOS) 
is computed by taking the average of the scores obtained 
during the perception test.

3.3 � Experimental framework
Spectrograms are computed with a frame size of 50 ms 
and a hop size of 10 ms. The predominant pitch track is 
computed using the predominant pitch tracking algo-
rithm using Essentia, and a corresponding binary mask is 
generated. The spectrogram shown in Fig. 2b highlights 
the estimated predominant pitch track for a polyphonic 
music signal. Approximate predominant source spectra 

(5)SDR = 10log10
�s�2

�errspat + errinter + errartif �2

(6)ISR = 10log10
�s�2

�errspat�2

(7)SAR = 10log10
�s + errspat + errinter�

2

�errartif �2
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are generated by applying the binary mask to the spec-
trogram of the mixed signal. A conditional adversarial 
network is used to enhance the masked predominant 
spectrogram and is implemented using an image-to-
image translation model described in [35]. During the 
training phase, the original spectrogram of the poly-
phonic signal is given to the train A folder, while corre-
sponding masked spectrograms are given to the train B 
folder. Generators learn to translate images from “train 
A” to “train B” and vice versa. Discriminators evaluate 
the authenticity of generated images in both domains. A 
subset of the IRMAS dataset with classes including flute 
(Flu), acoustic guitar (Gac), saxophone (Sax), trumpet 
(Tru), and human singing voice (Voice) is used for evalu-
ation. Since it has separate training and testing data, 70% 
the training data of fixed-length ( max. duration of wave 
file 3 s) of a class is used for training.

The training is performed in a Google Colab Pro GPU 
environment in 500 epochs with a batch size of 150. 
Validation of the hyper-parameters is performed using 
20% of training spectrograms. The variable-length test-
ing files with a single predominant instrument( max. 
duration of wave file 20 s) which is never used for train-
ing or validation are used for testing. A total of 105 files 
with acoustic guitar (25), flute (20), saxophone (10), 
trumpet (14), and voice (36) are used for evaluation. 
The masked spectrograms obtained from the front end 
are given to the trained CycleGAN network to enhance 
the spectrum. Finally, the constituent predominant 
source is reconstructed using the refined spectrum 
and mixed-signal phase. Later, objective and subjective 
evaluation is carried out.

3.4 � Performance comparison
The performance of the proposed method is compared 
with state-of-the-art Demucs [36] and Wave-U-Net 
architecture [20] which separates leading voice and 
instrument in the time domain.

The Demucs v2 [36] introduces a encoder/decoder 
architecture composed of a convolutional encoder, a bidi-
rectional long short-term memory (LSTM), and a con-
volutional decoder, with the encoder and decoder linked 
with skip U-Net connections. The U-Net structure allows 
for efficient feature extraction and integration across dif-
ferent scales of the input signal. The encoder extracts 
hierarchical representations of the input mixture, while 
the decoder generates separated sources based on these 
representations [36].

The Wave-U-Net is an adaptation of the U-Net archi-
tecture to the one-dimensional time domain to perform 
end-to-end audio source separation. Through a series of 
downsampling and upsampling blocks, which involve 
1D convolutions combined with a down-/upsampling 

process, features are computed on multiple scales/levels 
of abstraction and time resolution and combined to make 
a prediction [20]. The pre-trained models M4 and M6 are 
used to separate the lead voice and instrument [20].

4 � Results and analysis
The objective evaluation results showing the overall 
performance for the IRMAS and ADC2004 datasets are 
tabulated in Table  3. For ADC an average SAR of 4.24 
is observed. The decreased performance of this is due to 
the fewer training samples available in the dataset. Fig-
ure 5 represents the metrics comparison of the proposed 
method with Wave-U-Net and Demucs architecture.  It 
can be seen that an average SAR of 8.38 and 8.22 have 
been reported for Demucs and our proposed method 
respectively. Similar comparable results are obtained for 
SDR and ISR as shown in Table  4. The inclusion of an 
intelligibility enhancement module increased the SDR 
and SAR measures and is reported in Table 4. The idea of 
using a single model that can specialize in predicting the 
outputs directly from the inputs allows the development 
of otherwise highly complex systems that can be consid-
ered state-of-the-art. Even though an end-to-end model 
produces good results, it has some limitations that make 
it infeasible in some situations. An end-to-end model 
requires huge training data and is prone to temporal dis-
tortions, particularly in a polyphonic environment. Also, 
an end-to-end model is difficult to validate and often 
results in wrong outputs.

The results for CycleGAN-based source separation are 
shown in Fig. 6. The first row of the figure from Fig. 6(a) 
to  (e) represents the CycleGAN-generated spectro-
grams at various stages of the proposed model from 100 
to 500 epochs. The bottom row represents the ground 
truth spectrogram, and the corresponding CycleGAN 
generated one for comparison. From the generated 
spectrogram images, it is clear that near-real recon-
struction is achieved in spectral aspects. Phase informa-
tion from the original mixed audio is added vectorially, 
and inverse STFT is applied. Figure  7  represents the 
qualitative analysis of our proposed method with the 
Demucs model. Figure  7a represents the ground truth 
spectrogram of the predominant test signal and Fig. 7b 
represents the corresponding binary mask generated 
by the predominant extraction algorithm. Figure  7c 
represents the CycleGAN generated spectrogram, and 
Fig. 7d represents the spectrogram of Demucs separated 
predominant signal. From the figure, it is clear that 
our proposed method using CycleGAN correctly cap-
tures the predominant tracks than the state-of-the-art 
Demucs model.

Figure  8  represents the class-wise performance of 
our proposed method with enhancement with the 
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state-of-the-art Demucs and the Wave-U-Net models. 
Instrument class saxophone and trumpet show better 
performance than the Demucs and Wave-U-Net mod-
els in both SDR and SAR measures. Also, the instru-
ment class acoustic guitar reports an average SDR of 
2.86 and 3.34 for the Wave-U-Net model and Demucs 
whereas our proposed method reports an average SDR 
of and 4.05. Moreover, it is worth noting that the per-
formance of the Wave-U-Net and Demucs algorithms 
is relatively better when the predominant source is a 
human singing voice. However, our proposed method 
shows almost similar performance for lead instruments 

Fig. 5   Metrics comparison of the proposed method with Wave-U-Net and Demucs

Table 4  Comparison of proposed method with and without 
intelligent enhancement module

Metrics Demucs Wave-U-Net Proposed 
method without 
enhancement

Proposed 
method with 
enhancement

SDR 7.10 6.72 5.81 5.99

SAR 8.38 8.49 8.03 8.22

ISR 6.89 6.75 5.07 5.08

Fig. 6  Result of source separation. Generated spectrograms after a 100 epochs, b 200 epochs, c 300 epochs, d 400 epochs, e 500 epochs, 
f ground-truth spectrogram of predominant signal, and g CycleGAN generated spectrogram of the predominant signal
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Fig. 7   Spectrogram generated by our proposed method compared with ground truth and by Demucs generated

Fig. 8   Class-wise comparison of the proposed method with Wave-U-Net and Demucs
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and voice. Since these are preliminary results, we 
expect further model refinement will lead to significant 
improvements. Also, our proposed model can effec-
tively suppress noise it can be used for other applica-
tions like speech enhancement and speech source 
separation [34].

The subjective evaluation shows that the percepti-
bility of separated predominant sources from accom-
paniments is found promising, and a mean opinion 
score of 3.24 is obtained by evaluation. We hope that 
the proposed model may potentially benefit from more 
training data. It is also important to note that the per-
formance of the model depends on the efficacy of the 
predominant pitch tracking algorithm in estimating 
an accurate pitch track. Our model is easily scalable 
to any number of instruments, including voice, and we 
can easily customize the architecture for a new speech/
music mixture separation task. To summarize, the 
application of CycleGAN to open set predominant sep-
aration is the novelty of the proposed framework.

5 � Conclusion
A new approach of CycleGAN-based predominant 
source separation algorithm is proposed. The predomi-
nant pitch track is estimated using the predominant 
pitch tracking algorithm and is used as the conditional 
input. The perceptual quality of the separated predomi-
nant spectrogram is enhanced using the conditional 
GAN. The model successfully separates the predomi-
nant voice and the leading instrument from accompa-
niments. The performance of the proposed method is 
compared with the state-of-the-art Wave-U-Net model 
and shows competing performance in both subjective 
and objective measures.
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