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Abstract 

Speakers with dysarthria often struggle to accurately pronounce words and effectively communicate with others. 
Automatic speech recognition (ASR) is a powerful tool for extracting the content from speakers with dysarthria. 
However, the narrow concept of ASR typically only covers technologies that process acoustic modality signals. In this 
paper, we broaden the scope of this concept that the generalized concept of ASR for dysarthric speech. Our survey 
discussed the systems encompassed acoustic modality processing, articulatory movements processing and audio-
visual modality fusion processing in the application of recognizing dysarthric speech. Contrary to previous surveys 
on dysarthric speech recognition, we have conducted a systematic review of the advancements in this field. In 
particular, we introduced state-of-the-art technologies to supplement the survey of recent research during the era 
of multi-modality fusion in dysarthric speech recognition. Our survey found that audio-visual fusion technologies 
perform better than traditional ASR technologies in the task of dysarthric speech recognition. However, training 
audio-visual fusion models requires more computing resources, and the available data corpus for dysarthric speech 
is limited. Despite these challenges, state-of-the-art technologies show promising potential for further improving 
the accuracy of dysarthric speech recognition in the future.
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1  Introduction
Speech, as a carrier of linguistic expression, is gener-
ated through the coordinated movements of articulatory 
organs, which are regulated by neural activities in speech 
functional areas of the brain [1]. Speech plays an impor-
tant role in people’s daily communication and is an essen-
tial medium for them to carry out social activities [2, 
3]. Dysarthria as a speech disorder only refers to neuro-
muscular disturbances concerning strength, speed, tone, 
steadiness or accuracy of the movements responsible for 

speech production. Dysarthria is not dyslexia and dys-
arthric speakers have no difficulties in writing, speech 
comprehension or cognition of words and grammatical 
structures. Due to cortical lesions, dysarthric speakers 
show a series of neuropathological characteristics and the 
degree of dysarthria is affected by the position and sever-
ity of neuropathies [1]. Dysarthric speakers seldom pro-
nounce correctly. Especially for the speakers with severe 
dysarthria, communication with others is extremely dif-
ficult, which not only brings great inconvenience to the 
patients, but also increases their psychological burden 
[4]. Therefore, it is critical to study the ways for dysar-
thric speakers to rehabilitate, better communicate with 
others and return to the society.

Automatic speech recognition (ASR) can be very help-
ful for speakers with dysarthria [5]. Dysarthric speakers 
are easily exhausted, less able to express emotions and are 
prone to drooling and dysphagia. As a result, collecting 
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dysarthric speech is extremely difficult [6]. This difficulty 
leads to the scarcity of dysarthric speech data, which adds 
to the difficulty of ASR for dysarthric speech. In addition, 
as their pathogenesis differs, dysarthric speakers vary a lot 
in their pronunciation, which also results in a larger and 
more complex variation in the acoustic space of dysar-
thric speech compared with normal speech [7, 8]. In fact, 
human speech perception is inherently a bimodal process 
that uses both acoustic and visual information. Previously, 
many researches have demonstrated that incorporating 
visual modality can enhance the performance of noisy 
speech recognition task [9–12]. This has prompted the 
application of audio-visual speech recognition (AVSR) 
technology in addressing disordered speech [13–15].

Presently, reviews of dysarthria mainly include causes 
of pathology [16–18], computer-aided diagnosis [19–21], 
treatment and its assessment [22–36]. To our best knowl-
edge, the previous reviews on ASR for dysarthric speech 
primarily focused on the challenges faced when applying 
ASR to the elderly with dysarthria [37] and explored both 
general and specific factors that affect the accuracy of 
ASR for dysarthric speech [38]. Moreover, the technolo-
gies of ASR (especially, the generalized ASR) for dysar-
thric speech have a great development. Therefore, the 
primary objective of our survey is to discuss the trends 
of generalized ASR technologies for dysarthric speech 
including research on dysarthric speech databases, tech-
nologies of ASR for dysarthric speech, technologies of 
AVSR for dysarthric speech. Our survey provides a more 
comprehensive and systematic review of the develop-
ment of the technologies of generalized ASR (ASR and 
AVSR) technologies for dysarthric speech, highlight-
ing the latest advancements and future directions in this 
field. The main contributions of this paper include the 
following three aspects:

1)	 We present some commonly used databases of dys-
arthric speech that are employed for training Auto-
matic Speech Recognition (ASR) or Audio-Visual 
Speech Recognition (AVSR) systems;

2)	 We provide a comprehensive summary of both tra-
ditional and state-of-the-art technologies utilized in 
ASR for dysarthric speech, along with an analysis of 
the distinct characteristics of each ASR technology;

3)	 We introduce the latest audio-visual fusion technolo-
gies applied in the tasks of dysarthric speech recogni-
tion.

The rest of this paper will be as follows: Section 2 intro-
duces how we retrieve and select the papers for review; 
Section  3 introduces the databases of dysarthric speech 

used to train ASR or AVSR, trends of ASR technologies 
for dysarthric speech, newest technologies of AVSR for 
dysarthric speech, respectively; Section  4 discusses the 
challenges and the future prospects dysarthric speech 
recognition; Section 5 gives a conclusion.

2 � Methodology
Regarding the main objective, this review follows, where 
possible, well-established practices for conducting and 
reporting scoping reviews as suggested by the PRISMA 
statement [39]. Of the 27 items on the PRISMA check-
list, we are able to follow 13 in the paper’s title, introduc-
tion, methods, results, discussion and funding. Instead of 
focusing on different papers’ details and specificities, we 
aim to review the technologies of automated recognition 
of dysarthric speech.

2.1 � Retrieval
In the course of the scoping paper retrieval, the follow-
ing databases were searched: “Web of Science Core Col-
lection”, “IEEE Xplore” and “Engineering Village”. Time 
limitation is set as from 1900 to 2023. The key words 
including “Automatic Dysarthric Speech Recognition”, 
“ASR for Dysarthric Speech”, “Audio-Visual Dysarthric 
Speech Recognition”, “AVSR for Dysarthric Speech” are 
used as the retrieval condition.

2.2 � Selection
All authors jointly decide on the following selection cri-
teria to reduce possible deviations during selection. 
Firstly, we exclude the papers that are not cited by other 
researchers as their contribution may be insufficient. Sec-
ondly, we exclude less related papers. At this screening 
stage, the all authors jointly decide whether one paper 
is relevant to our research. We also exclude duplicated 
papers due to eligibility concerns. Finally, we select 82 
representative papers fitting the theme of our research. 
The papers fit in three categories of “dysarthric speech 
databases”, “technologies of ASR for dysarthric” and 
“technologies of AVSR for dysarthric speech”. The whole 
selection process can be found in Fig. 1.

In Fig. 1, symbols “a”, “b”, “c” and “d” respectively rep-
resent the total number of papers searched with key 
words “Automatic Dysarthric Speech Recognition”, “ASR 
for Dysarthric Speech”, “Audio-Visual Dysarthric Speech 
Recognition”, “AVSR for Dysarthric Speech”. During the 
three stages of “Screening”, “Eligibility” and “Inclusion”, 
symbol n represents the total number of papers searched 
according to the screening rules at each stage.
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3 � Results
From a technological perspective, factors that affect the 
performance of the ASR and AVSR system can be exter-
nal and internal. External factors mainly concern about 
the characteristics of data, and internal factors mainly 
concern about the framework designed in ASR or AVSR 
system.

3.1 � Commonly used Dysarthric speech databases
Databases of dysarthric speech are commonly used 
to train the models of ASR or AVSR. For example, the 
acoustic features extracted from audio files of dysarthric 
speech data corpus are used to train the acoustic model 
of ASR. The labelled text files are commonly used to 
train the language-lexical models of ASR or AVSR sys-
tems according to the phoneme dictionary. Additionally, 
the lip movements captured in video files are often fused 
with acoustic features to train the encoder model of an 
AVSR system. Table 1 lists some classic databases related 
to dysarthric speech that are discussed in this paper.

Whitaker is a database of dysarthric speech devel-
oped by Deller, et al. [40], which contains 19,275 isolated 
words spoken by 6 speakers with dysarthria resulting 

from cerebral palsy. Whitaker also contains the voices 
of healthy speakers as reference. The words in Whitaker 
database can be categorized into two groups: “TI-46” 
word list and “grandfather” word list. The “TI-46” word 
list contains 46 words, including 26 letters, 10 numbers 
and 10 control words of “start, stop, yes, no, go, help, 
erase, ruby, repeat, and enter”. TI-46 is a standard vocab-
ulary recommended by Texas Instruments Corporation 
[41] and has been widely used to test ASR algorithms. 
The “grandfather” word list contains 35 words, named 
after a paragraph that begins with “Let me tell you my 
grandfather...” and is generally used by the speech pathol-
ogists [42]. Each word in the TI-46 and grandfather word 
list was repeated for at least 30 times by 6 speakers with 
dysarthria. In most cases, 15 additional repetitions are 
also included, achieving a total of 45 repetitions. Normal 
speakers repeated 15 times for the database, serving as 
reference.

UASpeech database [43] was created by collecting 
dysarthric speech from 19 speakers with cerebral palsy. 
This database comprises 765 isolated words, including 
455 unique words, of which 155 were repeated for three 
times. In addition, the corpus contains 300 rare words, 

Fig. 1  PRISMA flow diagram of search methods
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numbers, computer commands, radio alphabets, and 
common words to ensure maximum phoneme sequences 
diversity.

The TORGO database [44] was completed jointly by 
the University of Toronto Departments of Computer Sci-
ence and Speech-Language Pathology and the Toronto 
Holland-Bloorview Kids Rehabilitation Hospital. Speech 
pathologists from the Bloorview Institute in Toronto 
recruited 7 dysarthric subjects aged between 16 and 
50 years old, all of whom suffered from dysarthria caused 
by cerebral palsy (such as spasticity, athetosis and ataxia). 
An additional subject diagnosed with amyotrophic lateral 
sclerosis (ALS) was also included in the study. Speech 
language pathologists evaluated the speech motor func-
tion of each dysarthric speaker. The acoustic data in the 
database were collected directly using a headset micro-
phone and a directional microphone, while the occlusal 
data were obtained through electromagnetic articulogra-
phy (EMA), which measured tongue and other occlusal 
organs of the speakers during their pronunciations. The 
collected data underwent 3-dimensional (3D) recon-
struction from binocular video sequences. The stimuli 
used in their study were sourced from various sources, 
including the TIMIT database, lists of identified tel-
ephone contacts, and assessments of speech intelligibil-
ity. For example, “non words” were used to control the 
baseline capabilities of dysarthric speakers, especially to 
gauge their artistic control in the presence of plosives and 
prosody. Speakers pronouncing /iy-p-ah/,/ah-p-iy/, and 
/p-ah-t-ah-k-ah/ respectively were asked to repeat for 
5–10 times. These pronunciation sequences could help 
analyse the characteristics of pronunciation around blast-
ing consonants [45]. The speakers were asked to keep 
pronouncing treble and bass vowels for over 5 seconds 
(i.e. pronouncing “e-e-e” for 5 seconds) This operation 
enabled researchers to explore how prosody could be 
applied to speech assistance technology, as many dysar-
thric speakers have limited control over their pitch [46]. 
“Short words” were critical for acoustic research [47] 

as voice activity detection was not necessary here. The 
stimuli included formant conversion between consonants 
and vowels, formant frequency of vowels, and sound 
energy of plosive consonants. The dysarthric speakers 
were asked to pronounce words like English numbers, 
yes/no, up/down/left/right/forward/back/select/menu, 
alphabet letters, the 50 words from the Frenchay dysar-
thria assessment [48], 360 words and 162 sentences from 
the “Yorkston-Beukelman Assessment of Intelligibility 
of Dysarthric Speech” [49], and 10 most common words 
in the British National Corpus [50]. Restricted sentences 
were used to help the recording of complete and syntac-
tically correct sentences for ASR. The content for rec-
ognition included the pre-selected sentences with rich 
phonemes, such as “The quick brown fox jumps over the 
lazy dog.” and “She had your dark suit in great water all 
year.”, the “grandfather” passage from the Nemours data-
base [51], and the 460 TIMIT derived sentences used as 
prompts in the MOCHA database [52, 53]. Unrestricted 
sentences were used to supplement restricted sentences 
as they included sentences that are not fluent and have 
syntactic variations. All the participants spontaneously 
read sentences from the description of Webber Photo 
Cards: Story Starters [54].

The Nemours database [51] contains 814 short non-
sense sentences out of which 74 were spoken by the 11 
male speakers with varying severity of dysarthria. In 
addition, the database also contains two continuous par-
agraphs recorded by the 11 speakers. The recordings of 
all speakers were carried out in a special room with Sony 
PCM-2500 microphones. Speakers repeated the content 
following the instructor for an average time of 2.5 to 
3 hours including breaks. The database was marked on 
word and phoneme levels. Words were labelled manually 
while phonemes were marked by Deep Neural Networks 
(DNN) and Hidden Markov Model (HMM) (DNN-
HMM)-based ASR and manually corrected later. Due to 
the sparse phoneme distribution in the Nemours data-
base, researchers find it challenging to use the database 

Table 1  Classical databases of dysarthric speech

Databases Amount of Data Number of Speakers Isolated Word/Continuous Speech Contain 
Video Files 
or Not

Whitaker 19,275(utterances) 6 Isolated Word Not

UASpeech 765(words) 19 Isolated Word Yes

TORGO 6177(utterances) 7 Mixed with Isolated Words and Continu-
ous Speech

Not

Nemours 74(utterances) 11 Continuous Speech Not

MOCHA-TIMIT 460(utterances) 2(+ 38 schedule recording) Continuous Speech Not

DEED 1680(utterances) 21(4 with dysarhtira and 17 healthy) Continuous Speech Yes
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to train ASR models and explore the potential impact of 
dysarthria [55, 56].

The dysarthric MOCHA-TIMIT database was cre-
ated by Alan Wrench [52] in 1999. He selected the 460 
short sentences from the TIMIT database [53] to include 
the major connected speech processes in English. The 
researcher used EMA (500 Hz sampling rate), laryngo-
graphy (16 kHz sampling rate) and electropalatography 
(EPG, 200 Hz sampling rate) to collect the movement 
of the speakers’ upper lip, lower lip, upper incisor, 
lower incisor, tongue tip, tongue blade (1 cm from tip of 
tongue) and tongue dorsum (1 cm from blade of tongue). 
The researcher planned to record the speech of 2 healthy 
speakers (one male and one female) and 38 speakers with 
dysarthria in May 2001. At present, detailed recording 
results are unclear and dysarthric data are unavailable 
online.

DEED is an audio-visual British English database that 
contains both dysarthric and normal speech. DEED has 
been ethically approved by the University of Sheffield, 
UK [57]. The whole name of DEED is the Dysarthric 
Expressed Emotional Database. In DEED data corpus, six 
basic emotions including “happiness”, “sadness”, “anger”, 
“surprise”, “fear” and “disgust” can support the research-
ers to explore the dysarthric emotion classification task. 
The DEED data corpus can be available online.1 The 
dysarthric speech part is recorded by 4 speakers: one 
female speaker with dysarthria due to cerebral palsy and 
3 speakers with dysarthria due to Parkinson’s disease (2 
female and 1 male). The text material of DEED is a subset 
of the material used in the SAVEE database [58]. Besides, 
the text material consists of 10 TIMIT sentences per 
emotion.

3.2 � Trends of ASR Technologies for Dysarthria Speech
Our survey summarizes the technologies used to design 
ASR for dysarthric speech from 1900 to 2023. The devel-
opment trend of technologies can be found in Fig. 2.

3.2.1 � Early machine learning methods‑based ASR 
for Dysarthric speech

To our best knowledge, the beginning research of ASR 
for dysarthric speech was initialized by Jayaram and 
Abdelhamied [59]. They delved into an artificial neural 
networks (ANN)-based acoustic model and successfully 
tested it on dysarthric speakers. The data used in their 
study [59] included 10 words recorded by a male dysar-
thric speaker, whose speech had only 20% intelligibility. 
The highest accuracy of ASR achieved was 78.25% [59]. 
Subsequently, Blaney and Wilson [60] tried to elucidate 

the cause of articulatory difference between dysarthric 
and healthy speakers, and explored the relationship 
between articulatory difference and the accuracy of ASR, 
for instance the relationship between the voice offset 
time (VOT) of voiced plosives, fricatives and vowels and 
ASR accuracy. Furthermore, speakers with moderate dys-
arthria exhibit greater variability in acoustic tests com-
pared to those with mild dysarthria and healthy speakers. 
In an experiment for comparing different acoustic fea-
tures in ASR based on the HMM, Polur and Miller [61] 
studied the fast Fourier transform, linear predictive, and 
Mel-Frequency Cepstrum Coefficients (MFCC) extracted 
from data provided training input to several whole-word 
hidden Markov model configurations. Their experi-
mental results show that a 10-state ergodic model using 
15 msec frames was better than other configurations 
and the MFCC performs better than the fast Fourier 
transform and linear predictive coding for training the 
ASR. According to the results of the above researches, 
the question arises: “how does the variation in acous-
tic features extracted from dysarthric speech affect the 
outcomes of acoustic models?” To answer this question, 
Fager [62] examined the duration variability of the iso-
lated words and voice types of 10 speakers with dysar-
thria caused by traumatic brain injury (TBI) and healthy 
speakers. Their study explored the relationship between 
intelligibility and duration as well as between intelligi-
bility and variability of dysarthric speech. The results 
revealed significant statistical differences between dysar-
thric and normal speech in terms of pronunciation dura-
tion and voice types. Consequently, some researchers 
have attempted to reduce the variability between dysar-
thric and normal speech to further enhance the accuracy 
of ASR for dysarthric speech. For example, Hawley, et al. 
[63] developed a limited vocabulary, speaker-dependent 
ASR that proved robust in dealing with speech variabili-
ties. The accuracy for the training data set improved from 
88.5% to 95.4% (p < 0.001). Even for speakers with severe 
dysarthria, the average word level recognition accuracy 
reached 86.9%.

In addition to the acoustic model, researchers have also 
made efforts to improve the accuracy of ASR for dysar-
thric speech. For instance, Greenm, et al. [64] developed 
an ASR based on context dependent HMM (CD-HMM) 
to recognize the audio commands from speakers with 
severe dysarthria. Their study found that these speakers 
with severe dysarthria had poor control over the target 
machine. Hain [65] proposed a method that gradually 
reduced the number of pronunciation variants for each 
word, similar to classification. This approach achieved 
good ASR performance using only a single pronuncia-
tion lexical model and was validated on both the Wall 
Street Journal and Switchboard datasets. Morales and 1  https://​sites.​google.​com/​sheff​ield.​ac.​uk/​deed

https://sites.google.com/sheffield.ac.uk/deed
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Fig. 2  The trends of ASR technologies for dysarthric speech
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Cox [66, 67] improved the acoustic model using weighted 
finite-state transducers (WFST) at the levels of confusion 
matrix and word and language respectively. Their experi-
mental results [66] showed that their approach outper-
formed maximum likelihood linear regression (MLLR) 
and Meta modelling.

Several researchers have compared different machine 
learning methods in designing ASR for dysarthric speech. 
For example, Hasegawa-Johnson, et  al. [68] compared 
HMM-based and support vector machines (SVM)-based 
ASR to evaluate the performance of different approaches 
when dealing with dysarthric speech. This study collected 
data from three dysarthric speakers (two males and one 
female). Their experimental results showed that HMM-
based ASR effectively recognized the speech of all dys-
arthric speakers, but had poor recognition accuracy for 
consonants that were damaged. SVM-based ASR had 
low accuracy for the stuttering speaker and high accu-
racy for the other two dysarthric speakers. Therefore, 
this research demonstrated that HMM-based ASR was 
robust for dysarthric speech with large variations in word 
length, while SVM-based ASR was better suited for pro-
cessing dysarthric speech with missing consonants (with 
an average recognition accuracy of 69.1%). However, the 
intelligibility of the dysarthric speech used in their study 
was unknown. Additionally, Rudzicz [69] incorporated 
articulatory knowledge of the vocal tract to mark seg-
mented and non-segmented sequences of non-typical 
speech. Their research [69] combined the above models 
with the discriminative learning models such as ANN, 
SVM and conditional random fields (CRF). Selouani, 
et  al. [70] developed an auxiliary system that combines 
ASR and Text-to-Speech (TTS) to enhance the intelligi-
bility of dysarthric speakers’ speech. The re-synthesized 
speech demonstrated high intelligibility.

3.2.2 � Technologies for Dealing with scarcity of Dysarthric 
speech data

The scarcity of dysarthric speech data has had a sig-
nificant impact on the performance of ASR systems. To 
address this issue, researchers have explored various 
methods to improve the accuracy of ASR for dysarthric 
speech. For example, Vachhani, et al. [71] used temporal 
and speed modifications to healthy speech to simulate 
dysarthric speech, aiming to expand the training data 
corpus and improve the performance of ASR for dysar-
thric speech. Their experimental results showed a 4.24% 
and 2% absolute improvement using tempo-based and 
speed-based data augmentation, respectively, compared 
to the baseline using healthy speech alone for train-
ing. Xiong, et al. [72] proposed a nonlinear approach to 
modify speech rhythm, reducing the mismatch between 

typical and atypical speech by either modifying dysar-
thric speech into typical speech or modifying typical 
speech into dysarthric speech for data augmentation. 
The latter approach of their study was found to be more 
effective, improving absolute accuracy by nearly 7% when 
tested on the UASpeech database.

Bhat, et  al. [73] used deep auto-encoder to modify 
and perturb healthy speech, thereby augmenting dysar-
thric speech data. They tested their data augmentation 
approach using an End-to-End ASR system and achieved 
an average of word error rate (WER) of 20.6% on the 
UASpeech, which represents an absolute improvement of 
16% over a baseline without data augmentation. Mariya 
Celin, et al. [74] designed a speaker-dependent ASR sys-
tem based on transfer learning, trained on UASpeech and 
SSN-Tamil databases. In their research, they employed 
virtual microphone array synthesis and multiresolution 
feature extraction (VM-MRFE) to augment the data. 
Their experimental results showed that their VM-MRFE-
based data augmentation reduced WER for isolated word 
recognition by up to 29.98% and WER for continuous 
speech recognition by 24.95%, outperforming conven-
tional speed and volume perturbation-based data aug-
mentation methods.

Furthermore, employing TTS to generate simulated 
dysarthric speech is another effective data augmenta-
tion technique that can enhance the performance of 
ASR systems for dysarthric speech. Soleymanpour, 
et  al. [75] developed a multi-speaker End-to-End TTS 
system to synthesize the dysarthric speech, incorpo-
rating dysarthria severity level and pause insertion 
mechanisms alongside other control parameters such as 
pitch, energy, and duration. Their experimental results 
demonstrated that their ASR system based on a DNN-
HMM model trained on additional synthetic dysarthric 
speech achieved a WER improvement of 12.2% compared 
to a model not trained on synthetic data. Additionally, 
the inclusion of severity level and pause insertion con-
trols resulted in a 6.5% reduction in WER for dysarthric 
speech recognition.

3.2.3 � ASR models of speaker‑dependent, speaker‑adaptive 
and speaker‑independent for Dysarthric speech

Researchers have also focused on speaker-dependent, 
speaker-adaptive, and speaker-independent problems in 
the development of ASR systems for dysarthric speech. 
Sharma and Hasegawa-Johnson [76] trained a speaker 
dependent ASR system for normal speakers using the 
TIMIT database and validated it with UASpeech data 
from seven dysarthric speakers. Their experimental 
results showed that the average accuracy of the speaker-
adaptive ASR system was 36.8%, while the average accu-
racy of the speaker-dependent ASR system was 30.84%. 
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Yilmaz, et al. [77] trained a speaker-independent acoustic 
model based on DNN-HMM using speech from different 
Dutch languages and tested it with Flemish speech. Their 
findings demonstrated that training the ASR system with 
speech from various Dutch languages improved its per-
formance for Flemish data.

3.2.4 � Specific strategies of improving ASR for Dysarthric 
speech

Several strategies have proven useful in further improv-
ing the performance of ASR systems for dysarthric 
speech. For instance, Mengistu and Rudzicz [78] pro-
posed using acoustic and lexical adaptation to improve 
the ASR for dysarthric speech. Their experimental results 
showed that acoustic adaptation reduced the world error 
rate by 36.99%, leading to a significant improvement in 
accuracy. Additionally, the pronunciation lexicon adapta-
tion (PLA) model further decreased the WER by an aver-
age of 8.29% when six speakers with moderate to severe 
dysarthria were asked to pronounce a large vocabulary 
pool of over 1500 words. The speaker-dependent sys-
tem with five-fold cross-validation demonstrated that 
PLA-based ASR also reduced the average WER by 7.11%. 
Christensen, et al. [79] proposed using MLLR and maxi-
mum a posteriori (MAP) adaptation strategies to improve 
ASR for dysarthric speech. Their approach improved rec-
ognition performance for all speakers with an average 
increase in accuracy of 3.2% and 3.5% respectively against 
the speaker dependent and independent baseline sys-
tems. Their approach improved recognition performance 
for all speakers, resulting in an average increase in accu-
racy of 3.2% and 3.5% against the speaker-dependent and 
independent baseline systems, respectively. They later 
proposed an alternative domain adaptive approach, com-
bining in-domain and out-domain data to train a deep 
belief network (DBN) to enhance ASR for dysarthric 
speech [80]. The key point in works [80] was that dur-
ing acoustic feature extraction, out-domain data train-
ing was used to generate a DBN. Augmented Multi-party 
Interaction (AMI) meeting corpus and TED talk corpus 
were then applied to optimize the previously trained 
model. Finally, the optimized model was verified on the 
UASpeech database, achieving an average recognition 
accuracy of 62.5%, which was 15% higher than the base-
line method before optimization. Sharma & Hasegawa-
Johnson [7] proposed an interpolation-based approach 
that obtained prior articulatory knowledge from healthy 
speakers and applied this knowledge to dysarthric speech 
through adaptation. Their study was validated on the 
UASpeech database. The experimental results showed 
that compared with the baseline approach of MAP adap-
tation, the interpolation-based approach achieved an 
absolute improvement of 8% and a relative improvement 

of 40% in recognition accuracy. Caballero-Morales and 
Trujillo-Romero [81] integrated multiple pronunciation 
patterns to improve the performance of ASR for dysar-
thric speech. This integration was achieved by weighing 
the response of the ASR system when different language 
model restrictions were set. The response weight param-
eters were estimated using a genetic algorithm, which 
also optimized the structure of the HMM-based imple-
mentation process (Meta-models). Their research was 
tested on the Nemours speech database and the experi-
mental results showed that the integrated approach had 
higher accuracy than the standard Meta-model and 
speaker adaptation approach. Mustafa, et  al. [82] used 
well-known adaptive technologies like MLLR and con-
strained-MLLR to improve ASR for dysarthric speech. 
The model trained using dysarthric speech and normal 
speech was applied as the source model. The experimen-
tal results showed that training normal and dysarthria 
speech together could effectively improve the accuracy of 
ASR systems for dysarthric speech. Constrained-MLLR 
had better performance than MLLR in dealing with 
mildly and moderately dysarthric speech. In addition, 
phoneme confusion was the main factor causing errors 
in the ASR of severely dysarthric speech. Sehgal and 
Cunningham [83] discussed the applicability of various 
speaker-independent systems, as well as the effective-
ness of speaker adaptive training in implicitly eliminat-
ing the differences in pronunciation among dysarthric 
speakers. Their research relied on hybrid MLLR-MAP for 
both speaker-independent and speaker-adaptive training 
systems, which were tested on the UASpeech database. 
Their experimental results showed that compared with 
the baseline approach, the research achieved an increase 
of 11.05% in absolute accuracy and 20.42% in rela-
tive accuracy. Furthermore, the speaker adaptive train-
ing system was more suitable for dealing with severely 
dysarthric speech and had better performance than 
speaker-independent systems. Bhat, et al. [84] proposed 
combining multi-taper spectrum estimation and multiple 
acoustic features (such as jitter or shimmer) with MLLR 
(fMLLR) and speaker-adaptive methods to improve ASR 
for dysarthric speech. Sriranjani, et  al. [85] proposed 
using fMLLR to process and combine pooled data and 
dysarthric speech to normalize the effect of inter-speaker 
variability. The results showed that combining features 
achieved a relative improvement of 18.09% and 50.00% 
over the baseline system for the Nemours database and 
UASpeech (digit set) database, respectively.

3.2.5 � Deep learning technologies of ASR for Dysarthric 
speech

Deep learning methods have demonstrated superior 
performance in Automatic Speech Recognition (ASR) 
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applications compared to traditional machine learning 
techniques. In recent years, researchers have focused on 
how to use deep learning methods to further improve 
the accuracy of ASR systems for dysarthric speech. Sha-
hamiri and Salim [86] proposed a dysarthric multi-net-
works speech recognizer (DM-NSR), which employs a 
multi-views, multi-learners strategy known as multi-nets 
ANN. The approach effectively accommodates the vari-
ability inherent in dysarthric speech. Experiment results 
on the UASpeech database revealed that DM-NSR 
achieved a 24.67% improvement in accuracy compared 
to single-network dysarthric speech recognizers. Walter, 
et al. [87] investigated unsupervised learning models for 
automatic dysarthric speech recognition. Their approach 
involved using vector quantization (VQ) to obtain Gauss-
ian posterior-grams at the frame level, followed by train-
ing acoustic unit descriptors (AUD) and phone-like units’ 
Hidden Markov Models (HMMs) in an unsupervised 
manner. Hahm, et al. [88] explored three across-speakers 
normalization methods in the acoustic and articulatory 
spaces of speakers with dysarthria: Procrustes Match-
ing (a physiological method in the articulatory space), 
Vocal Tract Length Normalization (VTLN, a data-driven 
method in the acoustic space), and MLLR. These meth-
ods were employed to address the significant variation 
in phonation among individuals with dysarthria. Their 
study [88] was based on the ALS database and demon-
strated that training the triple phoneme DNN-HMM 
(Triph-DNN-HMM) using acoustic and articulatory data 
and normalizing methods yielded the best performance. 
The phoneme error rate of this optimal combination was 
30.7%, which is 15.3% lower than that of the baseline 
method, “triple phoneme Gaussian Mixed Model-Hid-
den Markov Model (Triph-GMM-HMM) trained using 
acoustic data.”

Kim, et  al. [89] developed an ASR system for dys-
arthric speech using Kullback-Leibler (KL)-HMM 
approach. In their research, the emission probability of 
each state was modelled based on the posterior prob-
ability distribution of phonemes estimated by DNN. 
Their approach was trained on a corpus recorded by 
30 speakers (12 speakers with mild dysarthria, 8 speak-
ers with moderate dysarthria and 10 healthy speakers) 
and the speakers were asked to pronounce several hun-
dred words. Their experimental results showed that the 
DNN-HMM approach based on KL divergence outper-
formed traditional GMM-HMM and DNN approaches. 
Subsequently, the researchers [90] proposed using KL-
HMM to capture the variations of dysarthric speech. 
In their framework [90], the state emission probabil-
ity was predicted by the posterior probability value of 
phoneme. Additionally, the researchers introduced 
a speaker adaptation method based on “L2-norm” 

regularization (also known as ridge regression) to fur-
ther reflect the specific speech patterns of individual 
speakers, thereby reducing confusion. Their approach 
improved the distinguishability of state classification 
distributions in KL-HMM while retaining the specific 
speaker information. Their research [90] was conducted 
on a self-made database comprising 12 speakers with 
mild dysarthria, 8 speakers with moderate dysarthria, 
and 10 normal individuals. Their experimental results 
showed that combining DNN with KL-HMM yielded 
better performance than traditional speaker-adaptive 
DNN-based approaches in dysarthric speech recogni-
tion tasks.

Yilmaz, et  al. [91] proposed a multi-stage DNN train-
ing scheme, aiming to achieve high performance of ASR 
for dysarthric speech with a small amount of in-domain 
training data. Their experimental results demonstrated 
that this multi-stage DNN approach significantly out-
performed a single-stage baseline system trained with a 
large amount of normal speech or a small amount of in-
domain data, achieving higher accuracy in recognizing 
Dutch dysarthric speech.

Xiong, et  al. [92] proposed a method that employs 
long short-term memory (LSTM) to simulate the inverse 
mapping from acoustic to articulatory space, aiming to 
enhance the accuracy of ASR for dysarthric speech. Their 
proposed approach supplemented information for DNN, 
taking advantage of acoustic and articulatory informa-
tion. Kim, et  al. [93] developed a convolutional LSTM 
(CLSTM)-Recurrent Neural Networks (RNN) (CLSTM-
RNN)-based ASR for dysarthric speech, which was vali-
dated on a self-made database comprising 9 dysarthric 
speakers. Their experimental results showed that the 
CLSTM-RNN achieved better performance than con-
volutional neural networks (CNN) and LSTM-RNN. Joy 
and Umesh [6] explored a variety of methods to improve 
the performance of ASR for dysarthric speech. They 
adjusted the parameters of different acoustic models, 
used speaker-normalized Cepstrum features, trained a 
speaker-specific acoustic model using a complex DNN-
HMM model with dropout and sequence-discrimina-
tion strategies, and incorporated specific information 
from dysarthric speech to enhance recognition accuracy 
for severely and severely-moderately dysarthric speak-
ers. Their research was tested on the TORGO database 
and achieved ideal recognition accuracy. Yu, et  al. [94] 
proposed a series of deep-neural-network-framework 
acoustic models based on time delayed neural net-
works (TDNN), LSTM-RNN, and their advanced vari-
ants to develop an ASR system for dysarthric speech. 
They also utilized learning hidden unit contribution 
(LHUC) to adapt to the acoustic variations of dysarthric 
speech and improved feature extraction by constructing 
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a semi-supervised complementary auto-encoder. Test 
results on the UASpeech dataset showed that this inte-
grated approach achieved an overall word recognition 
accuracy of 69.4% on a test set containing 16 speakers.

Hermann and Doss [95] proposed to use the lattice-
free maximum mutual information (LF-MMI) in the 
advanced sequence discriminative model. Their research 
[95] aimed to further improve the accuracy of ASR for 
dysarthric speech. Experimental results on the TORGO 
database showed that the performance of ASR for dys-
arthric speech using LF-MMI was effectively improved. 
Yakoub, et  al. [96] proposed a deep learning architec-
ture including CNN, empirical mode decomposition 
and Hurst (EMDH)-based mode selection to improve 
the accuracy of ASR for dysarthric speech. The k-fold 
cross-validation test conducted on the Nemours data-
base showed that this architecture outperformed both 
the GMM-HMM and CNN baseline approaches with-
out EMDH enhancement, achieving overall accuracy 
improvements of 20.72% and 9.95%, respectively.

Wu, et al. [97] proposed a contrastive learning frame-
work to capture the acoustic variations of dysarthric 
speech, aiming to obtain robust recognition results of 
dysarthric speech. Their study also explored data aug-
mentation strategies to alleviate the scarcity of speech 
data. Wang, et  al. [98] proposed using meta-learning 
to re-initialize the basic model to tackle the mismatch 
between statistical distributions of normal and dys-
arthric speech. They extended model-agnostic meta 
learning (MAML) and Reptile algorithms to update the 
basic model, repeatedly simulating adaptation to differ-
ent speakers with dysarthria. Experimental results on 
the UASpeech dataset showed that this meta-learning 
approach reduced the relative WER by 54.2% and 7.6% 
compared to a DNN-HMM-based ASR without fine-
tuning and an ASR with fine-tuning, respectively. Sha-
hamiri [99] developed a specific ASR system called 
Speech Vision, which learned to recognize the shape of 
words pronounced by dysarthric speakers. Their visual 
acoustic modeling approach helped eliminate phoneme-
related challenges, and visual data augmentation was 
used to address data scarcity. Experimental results on the 
UASpeech database demonstrated a 67% improvement in 
accuracy.

Hu, et  al. [100] applied neural architecture search 
(NAS) to automatically learn the two hyper-parameters 
of factored time delay neural networks (TDNN-Fs), 
namely the left and right splicing context offsets and 
the dimensionality of the bottleneck linear projection 
at each hidden layer. They utilized differentiable neural 
architecture search (DARTS) to integrate architecture 
learning with lattice-free maximum mutual informa-
tion (LF-MMI) training, Gumbel-Softmax and Pipelined 

DARTS to reduce confusion over candidate architectures 
and improve generalization of architecture selection, 
and penalized DARTS to incorporate resource con-
straints to balance the trade-off between system perfor-
mance and complexity. Their experimental results based 
on the UASpeech database demonstrated that the NAS 
approach for TDNN-Fs achieved significant improve-
ment in ASR for dysarthric speech.

Yue et  al. [101] proposed a multi-stream model as 
the acoustic model of ASR for dysarthric speech, which 
consists of convolutional, recurrent, and fully con-
nected layers neural networks. This framework allows 
for pre-processing various information streams and fus-
ing them at an optimal level of abstraction. Their experi-
mental results based on the TORGO and UASpeech 
databases showed that the WERs can achieve 35.3% and 
30.3%, respectively. In their study, they also compared 
the results of multi-stream model-based ASR trained by 
different acoustic features of dysarthric speech, such as 
MFCC, filter bank (FBank), raw waveform, and i-vector. 
Their research demonstrated that such a multi-stream 
processing leverages information encoded in the vocal 
tract and excitation components and leads to normal-
izing nuisance factors such as speaker attributes and 
speaking style. This operation can lead to better handling 
of dysarthric speech that exhibits large inter- and intra-
speaker variabilities and results in a notable performance 
gain. Subsequently, researchers [102] studied how to 
effectively further improve the performance of data aug-
mentation and multi-stream acoustic modelling through 
combining non-parametric and parametric CNNs fed by 
hand-crafted and raw waveform features. Their experi-
mental results based on the TORGO database showed 
that parametric CNNs outperform non-parametric 
CNNs, with an average WER reaching up to 35.9% tested 
on dysarthric speech. Loweimi, et al. [103] used the raw 
real and imaginary parts of the Fourier transform of 
speech signals to investigate the multi-stream acoustic 
modelling approach. In their framework, the real and 
imaginary parts are treated as two streams of informa-
tion, pre-processed via separate convolutional networks, 
and they combined at an optimal level of abstraction, fol-
lowed by further post-processing via recurrent and fully 
connected layers of neural networks. Their experimental 
results based on TORGO show that the WER of dysar-
thric speech achieved to 31.7%. The multi-stream model-
ling approach provides a novel direction to improve the 
performance of ASR for dysarthric speech. This opera-
tion can reduce the loss of information caused by using 
single feature extracted by speech.

Mulfari, et  al. [104] exploited a CNN architec-
ture to predict the presence of a reduced number of 
speech commands within an atypical speech. In their 



Page 11 of 19Qian et al. EURASIP Journal on Audio, Speech, and Music Processing         (2023) 2023:48 	

research, they focused on isolated word recognition. 
Their ASR model was trained on a 21 K speech data 
corpus. Geng, et  al. [105] proposed speech spectrum 
decomposition based on singular value decomposition 
(SVD) to facilitate speaker adaptation of hybrid DNN/
TDNN and end-to-end Conformer speech recognition 
systems based on auxiliary feature. Their experimen-
tal results based on UASpeech and TORGO showed 
that their proposed spectro-temporal deep feature 
adapted systems outperformed the i-vector and x-vec-
tor adaptation by up to 2.63% absolute reduction in 
WER. The best average of WER of their method can 
achieve 25.05% based on 16 dysarthric speakers from 
UASpeech.

3.2.6 � Transfer learning technologies of ASR for Dysarthric 
speech

Knowledge transferred from the acoustic space of nor-
mal speech to the acoustic space of dysarthric speech 
can be very helpful to improve the performance of 
ASR for dysarthric speech by pre-training method-
ology. Vachhani, et  al. [106] proposed to use a deep 
auto-encoder to enhance the MFCC representation per-
formance of ASR for dysarthric speech. In the research 
[106], normal speech was used to train the auto-
encoder, and then the trained auto-encoder was used 
in transfer learning to improve the representation of 
acoustic features. Test results on the UASpeech showed 
that the accuracy of ASR for dysarthric speech improved 
by 16%. Takashima, et al. [107] proposed to use transfer 
learning to obtain knowledge from normal and dysar-
thric speech, and then used the target dysarthric speech 
to fine-tune the pre-trained model. This approach was 
tested on Japanese dysarthric speech. Experimental 
results showed that this transfer learning approach sig-
nificantly improved the performance of ASR for dysar-
thric speech. Xiong, et al. [108] proposed an improved 
transfer learning framework, which was suitable for 
increasing the robustness of the dysarthric speech rec-
ognition. The proposed approach was utterance-based 
and selected source domain data based on the entropy 
of posterior probability. The ensuing statistical analysis 
obeyed a Gaussian distribution. Compared with con-
volutional neural networks time delay deep neural net-
works (CNN-TDNN) trained by source domain data (as 
the transfer learning baseline), the proposed approach 
performed better on the UASpeech database. The pro-
posed approach could accurately select potentially use-
ful source domain data and improved absolute accuracy 
by nearly 20% against the transfer learning baseline 
for recognition of moderately and severely dysarthric 
speech.

3.2.7 � Representation learning technologies of ASR 
for Dysarthric speech

Representation of acoustic features can significantly 
impact the performance of ASR for dysarthric speech. 
Takashima, et  al. [109] used the pre-trained convolu-
tional bottleneck network (CBN) to extract acoustic fea-
tures from dysarthric speech and trained an ASR system 
using these features. Their study was based on patients 
with hand foot cerebral palsy, which is challenging due to 
their limited ability to pronounce words. To address over-
fitting issues caused by limited data, they incorporated 
convolution limited Boltzmann machines during pre-
training. Word recognition experiments demonstrated 
that this approach outperformed networks without pre-
training. Yilmaz, et al. [110] explored the use of gamma-
tone features in ASR for dysarthric speech and compared 
them to traditional Mel-filters. Gammatone features were 
found to better capture resolution variation in the spec-
trum, making them more representative of vocal tract 
kinematics. Using gammatone features improved the 
robustness of ASR by explaining the variability observed 
in the acoustic space. Zaidi, et al. [111] explored how to 
combine DNN, CNN and LSTM to improve the accuracy 
of ASR for dysarthric speech. They compared MFCC, 
Mel-Frequency Spectrum Coefficient (MFSC), and Per-
ceptual Linear Prediction (PLP) in their study. Results 
on the Nemours database showed that CNN-based ASR 
achieved an accuracy of 82% when PLP parameters were 
used, which was 11% and 32% higher than LSTM-based 
and GMM-HMM-based ASR, respectively. Revathi, et al. 
[112] proposed a combination of gammatone energy with 
filters calibrated in different non-linear frequency scales 
(GFE), stockwell features, modified group delay cepstrum 
(MGDFC), speech enhancement, and VQ-based clas-
sification. After fusing all acoustic feature parameters 
at the decision level of speech enhancement, the WER 
of ASR for dysarthric speech (with an intelligibility of 
6%) was reduced to 4%. Additionally, the WER of ASR 
for dysarthric speech (with an intelligibility of 95%) was 
reduced to 0%. However, their research was based on a 
corpus where only digital pronunciation was available, 
making it difficult to evaluate its applicability. Rajeswari, 
et al. [113] treated dysarthric speech as distorted or noisy 
voice and enhanced it using variational mode decomposi-
tion (VMD) and wavelet thresholding before recognizing 
it using CNN as characters. Experimental results on the 
UASpeech database showed that the average accuracy of 
ASR for dysarthric speech was 91.8% without enhance-
ment and improved to 95.95% with VMD enhancement. 
However, their results lack statistical significance due to 
the absence of standard deviations or confidence inter-
vals provided in their study.
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Hernandez, et  al. [114] pre-trained an acoustic model 
with features extracted from Wav2Vec, Hubert, and the 
cross-lingual XLSR (a cross-lingual data corpus). Their 
findings suggest that speech representations pre-trained 
on large unlabelled data can enhance ASR performance 
for dysarthric speech. Wang & Van hamme [115] com-
pared various mono- or cross-lingual pre-training meth-
odologies and quantitatively examined the benefits of 
pre-training for Dutch dysarthric speech recognition. 
Baskar, et  al. [116] explored integrating wav2vec with 
fMLLR features or x-vectors during fine-tuning. They 
proposed an adaptation network for fine-tuning wav-
2vec using these features, achieving a 57.72% WER for 
high severity in UASpeech. Violeta, et  al. [117] investi-
gated the self-supervised learning frameworks (wav2vec 
2.0 and WavLM, a large scale self-supervised pre-trained 
model proposed by Azure Speech Group of Microsoft) 
using different setups and compared the performances 
of ASR systems for pathological speech (including elec-
tro-laryngeal speech and dysarthric speech) with differ-
ent supervised pre-training setups. Their experimental 
results based on UASpeech show that the best WER of 
extremely severe dysarthric speech can achieve 51.8%, 
however, the result is not better than the only-used 
acoustic feature Mel-scale FBank. This is because the 
discrepancy between the normal speech and dysarthric 
speech is too large. To further improve the performance 
of ASR using un-supervised, self-supervised or semi-
supervised strategy, we should find an effective way to 
minify this discrepancy between the normal speech 
and dysarthric speech. In fact, a large amount of speech 
data corpus used to pre-train the representation model 
by un-supervised learning method can effectively make 
the neural networks learn the prior knowledge from the 
training data. This operation combining transfer-learning 
methods would make the framework perform better in 
ASR for dysarthric speech than the model without pre-
trained by speech data corpus.

3.2.8 � Language and lexical model of ASR for Dysarthric 
speech

Language-lexical models are crucial components of 
ASR, and their improvement can further enhance the 
accuracy of ASR for dysarthric speech. Seong, et al. [118] 
proposed a multiple pronunciation lexical modelling 
based on phoneme confusion matrix to improve the per-
formance of ASR for dysarthric speech. The system first 
created a confusion matrix based on phoneme recogni-
tion results, then extracted pronunciation variation rules 
from the analysis of this matrix. These rules were applied 
to develop a speaker-dependent multiple pronunciation 
lexicon, which reduced relative WER by 5.06% com-
pared to a group-dependent multiple pronunciation 

lexicon. Subsequently, the researchers [119] also used 
interpolation to integrate the lexicon and WFST of con-
text dependent confusion matrix, aiming at correct-
ing the wrongly recognized phonemes. Their approach 
reduced world error rate by 5.93% and 13.68% com-
pared to baseline and error correction approaches with 
context-independent confusion matrices, respectively. 
Sriranjani, et al. [120] proposed to use the state specific 
vector (SSV) of the acoustic model trained by phoneme 
cluster adaptation (Phone-CAT) to identify the pronun-
ciation errors of each speaker with dysarthria. SSV is a 
low-dimensional vector estimated for each binding state, 
with each element representing the weight of a specific 
mono-phoneme. Their method improved the relative 
accuracy of all speakers by 9% on the Nemours data-
base compared to a standard lexical model-based ASR 
system.

Yue, et  al. [121] used the classic TORGO database to 
investigate the impact of language model (LM) on ASR 
systems. By training the LM with different vocabularies, 
they analysed the confusion results of speakers with vary-
ing degrees of dysarthria. Their findings revealed that the 
optimal complexity of the LM is highly dependent on the 
speaker.

3.2.9 � End‑to‑end ASR for Dysarthric speech
End-to-End ASR is a potent system for processing speech, 
but it requires a substantial amount of data for training. 
Unfortunately, obtaining dysarthric speech is challeng-
ing due to the speaker’s inability to pronounce fluently. 
Researchers are exploring ways to enhance the accuracy 
of dysarthric speech recognition using End-to-End ASR 
with limited speech data. For example, Takashima et al., 
[122] proposed an End-to-End ASR framework that 
integrates an acoustic and language model. The acoustic 
model component of their framework is shared among 
speakers with dysarthria, while the language model por-
tion is assigned to each language regardless of dysarthria. 
Their experimental results from a self-created Japanese 
data corpus demonstrated that End-to-End ASR can 
effectively recognize dysarthric speech even with mini-
mal speech data.

Lin, et  al., [123] suggested restructuring the acoustic 
model parameters into two layers, with only one layer 
being retrained. This approach aims to effectively utilize 
limited data for training End-to-End ASR systems for 
dysarthric speech. Additionally, they [124] proposed a 
staged knowledge distillation method to design an End-
to-End ASR system and an automatic speech attribute 
transcription system for speakers with dysarthria result-
ing from either cerebral palsy or amyotrophic lateral scle-
rosis. Their experimental results on the TORGO database 
demonstrated that their proposed method achieved a 
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38.28% relative phone error rate compared to the base-
line method.

Different from the above ways in dealing with dys-
arthric speech, Soleymanpour, et  al., [125] proposed a 
specialized data augmentation approach to enhance the 
performance of End-to-End ASR based on sub-word 
models. Their proposed methods contain two parts: “pro-
sodic transformation” and “time-feature masking”. Their 
experimental results of TORGO database showed that 
their approach reduced the character error rate (CER) by 
11.3% and WER by 11.4%.

Almadhor, et al. [126] proposed a spatio-temporal ASR 
system based on Spatial CNN and multi-head attention 
Transformer to visually extract the acoustic features from 
dysarthric speech. Their experimental results on the 
UASpeech database showed that the best word recogni-
tion accuracy (WRA, they used WRA to evaluate their 
proposed method) achieved to 90.75%, 61.52%, 69.98% 
and 36.91% of low level dysarthric speech, mild level dys-
arthric speech, high level dysarthric speech and very high 
level dysarthric speech, respectively. However, overfitting 
problem influences the generalization of the system. Sha-
hamiri, et al. [127] proposed to use Transformer frame-
work-based End-to-End ASR for dysarthric speech. In 
their research, they designed a two-phase transfer-learn-
ing pipeline to leverage healthy speech. They investigated 
neural freezing configurations and used data augmenta-
tion for audio samples. After training 45 speaker-adap-
tive dysarthric ASR, their experimental results based on 
UASpeech showed that the WRAs of their best approach 
surpassed those of the benchmarks Fig. 3.

3.3 � Trends of AVSR Technologies for Dysarthric Speech
The speech perception of humans exhibits a bi-modal 
processing characteristic [128]. Visual information is 
not affected by acoustic signal damage, providing com-
pensatory information for ASR systems. Researchers 
have explored utilizing visual information to enhance 
the performance of ASR for dysarthric speech. Liu, et al. 
[14] proposed to use the Bayesian gated neural network 
(BGNN) to design the AVSR for dysarthric speech. In 
their research, the Bayesian gated control of contributions 

from visual features allows a robust fusion of audio and 
video modality. Their experimental results based on 
UASpeech showed that the WER of BGNN-based AVSR 
outperformed the DNN-based ASR by 4.5% and AVSR by 
4.7%, respectively. However, severe voice quality degra-
dation and large mismatch against normal speech affect 
AVSR’s performance for dysarthric speech. Subsequently, 
the researchers [129] proposed a cross-domain visual 
feature generation approach to address the above prob-
lems. Their experimental results on the UASpeech cor-
pus demonstrated that the AVSR based on cross-domain 
visual feature generation outperformed baseline ASR and 
AVSR without this approach. Hu, et al. [130] proposed a 
cross-domain acoustic-to-articulator inversion approach. 
Their model was pre-trained using parallel acoustic-
articulatory data from the 15-hour TORGO corpus. After 
pre-training, the model was adapted to the 102.7-hour 
UASpeech corpus to generate articulatory features. The 
cross-domain acoustic-to-articulator inversion approach 
was designed using mixture density networks, with a 
cross-domain feature adaptation network reducing the 
mismatch between TORGO and UASpeech data. Their 
experiments showed that their best performing system 
incorporating video modality, cross-domain articulatory 
features, data augmentation, and learning hidden unit 
contributions speaker adaptation achieved an average 
WER of 24.82% on the 16 dysarthric speakers from the 
UASpeech corpus.

Yue, et  al. [131] proposed a multi-stream framework 
that combines convolutional, recurrent, and fully con-
nected layers to fuse articulatory and acoustic features 
extracted from dysarthric speech. While the fusion of 
articulatory and acoustic features does not constitute a 
true AVSR for dysarthric speech, the articulatory infor-
mation collected through EMA can serve as visual move-
ment information, providing compensatory information 
for the acoustic aspects of dysarthric speech. Therefore, 
we also include this research in our discussion.

Relying solely on lip movement as visual information to 
fuse acoustic features cannot fully cover the movements 
of articulatory. However, EMA has some drawbacks such 
as high cost, difficult acquisition, etc. To address the 

Fig. 3  The trends of AVSR technologies for dysarthric speech
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above problems, Yu, et  al. [132] proposed a multi-stage 
fusion framework to further improve the performance 
of AVSR for dysarthric speech. In their research, their 
framework includes two-stage fusion operation. The 
first stage is the visual fusion. During this stage, Yu, et al. 
[132] obtained the facial speech functional area from 
the speakers frame by frame and fused these areas into 
the visual code. During the second stage, they fused the 
visual code and acoustic features using Hubert frame-
work. After pre-training the AVSR model by LRS2 data 
corpus mixed with UASpeech, their fine-tuned AVSR 
can perform excellent. Their experimental results based 
on UASpeech show that the best WER was reduced by 
13.5% on moderate dysarthric speech. In addition, for 
the mild dysarthric speech, the best result that the WER 
arrived at 6.05%. Even for the extremely severe dysarthric 
speech, the WER achieved at 63.98%, which reduced by 
2.72% and 4.02% compared with the WERs of wav2vec 
and HuBERT, respectively.

3.4 � Summary of ASR and AVSR Technologies for Dysarthric 
Speech

According to the above analysis of ASR and AVSR tech-
nologies for dysarthric speech, we can find that technolo-
gies before deep learning and after deep learning have a 
large difference. Table 2 provides the comparison of com-
puting complexity, training time cost, amount of training 
data and type of computing resources, etc.

As shown in Table  2, the computing complexity of 
AVSR is significantly higher than that of ASR. Further-
more, deep learning-based ASR has a higher computing 
complexity compared to machine learning-based ASR. 
Training AVSR requires more audio and video data, 
which can be challenging due to the difficulty in collect-
ing such data from speakers with dysarthria. The scarcity 
of training data is one of the main challenges in dealing 
with dysarthric speech. Additionally, both trained models 
of ASR and AVSR are prone to overfitting.

4 � Discussion
The scoping review aims to provide a comprehensive 
overview of the development of ASR and AVSR technol-
ogies for dysarthric speech. Unlike previous surveys, our 
systematic review examines the trends in ASR and AVSR 

technologies specifically for dysarthric speech. To the 
best of our knowledge, this is the first survey that focuses 
on AVSR for dysarthric speech.

Over the past few decades, ASR technologies for dys-
arthric speech have evolved into various subdomains, 
such as “machine learning-based ASR”, “technologies 
for data augmentation”, “technologies for dealing with 
the speaker-adaptation of ASR”, “specific strategies of 
improving ASR”, “deep learning-based ASR”, “transfer-
learning-based ASR”, “representation-learning-based 
ASR”, “language-lexical model of ASR” and “end-to-end 
ASR”. In fact, the edges of these above subdomains are 
blurred. Dividing them into the above subdomains is 
purely to facilitate our discussion. One major challenge 
we face is how to further improve the accuracy of ASR 
with limited resources for dysarthric speech, as collect-
ing data from speakers with dysarthria can be extremely 
difficult.

The emergence of AVSR for dysarthric speech presents 
a promising new direction. Multi-modality fusion speech 
recognition allows us to leverage information from artic-
ulatory movements to compensate for the loss of acous-
tic information in dysarthric speech. However, there are 
still some obstacles to overcome in this novel field. For 
instance, EMA devices are costly, and using them for data 
collection may disturb the pronunciation process of dys-
arthric speakers. Additionally, obtaining synchronous 
audio and video signals from dysarthric speakers can be 
challenging. In the future, improving the performance of 
fusion frameworks and expanding the audio-visual data 
available for dysarthric speech will be crucial in advanc-
ing this field.

5 � Conclusion
This scoping survey analysed 82 papers selected from 
160 papers in the field of ASR and AVSR for dysarthric 
speech. The large variations among dysarthric speakers 
make it challenging for ASR to reduce speaker depend-
ence due to poor generalization applicability of the 
acoustic model. This issue poses a significant challenge 
for the commercialization and popularization of ASR 
systems. Furthermore, dysarthric speakers exhibit sub-
stantial differences in their pronunciation, and available 
speech data is scarce. Data scarcity makes it difficult to 

Table 2  Comparison of ASR and AVSR technologies for dysarthric speech

Type of Model ASR or AVSR Training Time Required 
Video?

Parameter Size of Model Required GPU?

Machine Learning ASR Hours Level No ≤Kilobyte Level No Need

Deep Learning ASR Days Level No >Mbyte Level Yes

Deep Learning AVSR Days (or even Weeks Level) Yes > > Mbyte Level (Gigabyte Level) Yes
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meet the required amount needed to train models using 
big data. Therefore, data scarcity is also an obstacle that 
hinders further improvement of models’ performance in 
ASR for dysarthric speech. Despite the limited research 
on AVSR for dysarthric speech, this technology still holds 
promise. The scoping survey of ASR and AVSR for dys-
arthric speech can serve as a valuable technical reference 
for researchers in this field.
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