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Abstract 

Shouted and normal speech classification plays an important role in many speech-related applications. The exist-
ing works are often based on magnitude-based features and ignore phase-based features, which are directly related 
to magnitude information. In this paper, the importance of phase-based features is explored for the detection 
of shouted speech. The novel contributions of this work are as follows. (1) Three phase-based features, namely, relative 
phase (RP), linear prediction analysis estimated speech-based RP (LPAES-RP) and linear prediction residual-based RP 
(LPR-RP) features, are explored for shouted and normal speech classification. (2) We propose a new RP feature, called 
the glottal source-based RP (GRP) feature. The main idea of the proposed GRP feature is to exploit the difference 
between RP and LPAES-RP features to detect shouted speech. (3) A score combination of phase- and magnitude-
based features is also employed to further improve the classification performance. The proposed feature and combi-
nation are evaluated using the shouted normal electroglottograph speech (SNE-Speech) corpus. The experimental 
findings show that the RP, LPAES-RP, and LPR-RP features provide promising results for the detection of shouted 
speech. We also find that the proposed GRP feature can provide better results than those of the standard mel-fre-
quency cepstral coefficient (MFCC) feature. Moreover, compared to using individual features, the score combination 
of the MFCC and RP/LPAES-RP/LPR-RP/GRP features yields an improved detection performance. Performance analysis 
under noisy environments shows that the score combination of the MFCC and the RP/LPAES-RP/LPR-RP features gives 
more robust classification. These outcomes show the importance of RP features in distinguishing shouted speech 
from normal speech.

Keywords  Shouted and normal speech classification, Audio classification, Relative phase information, Score 
combination

1  Introduction
Speech and speaker recognition systems have gained 
great interest in the research community because of 
human-computer interfaces, home security, telephone 
banking, etc. [1–3]. However, since these systems are 
typically trained by normally phonated speech, their per-
formance degrades when shouted utterances/speeches 
are used for testing data [4, 5]. As a result, the study of 
shouted speech detection is important for tackling a pos-
sible mismatch between training and testing sets [6–8]. It 
is well-known that normal and shouted speech classifica-
tion is powerful for new debate analysis [9] and security 
applications [10]. For example, in a new debate situation, 
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when multiple speakers are in the panel considering a 
specific issue, the speaker often produces shouted speech 
to emphasize his/her point, and/or panel members shout 
to suggest different views. This suggests the importance 
of distinguishing the shouted speech from normal speech 
in order to comprehend different points expressed by the 
speakers. In emergency situations, people often shout 
some utterances when calling for help. The successful 
analysis/detection of shouted utterances can mean his/
her survival. These examples motivate the need to build 
an effective method for detection of shouted speech.

Scholars have reported that the differences between 
shouted and normal speech can be perceived by the 
human auditory system without any additional efforts. 
However, this task is challenging for computational sys-
tems [6, 11]. Thus, the analysis of production character-
istics of shouted speech is necessary. Shouted speech is 
normally produced when the speaker is excited about 
something or is emotionally charged in response to a 
disturbing stimulus. Its production characteristics lead 
to different vocal efforts between normal and shouted 
speech [12]. Therefore, the characterization of the differ-
ent vocal efforts focuses on energy, excitation source and 
vocal tract source. The next subsection briefly reviews 
existing shouted speech detection frameworks that focus 
on feature extraction.

1.1 � Related work
The major attempts towards shouted speech detection 
tasks usually contain front-end feature extraction [13] 
and back-end classification [14]. In this paper, we focus 
on front-end feature extraction. Various features have 
been explored that capture substantial information for 
identification of shouted speech. The earlier studies 
focused on different characteristics of excitation source 
in terms of fundamental frequency ( F0 ) and energy. By 
studying the effect based on F0 , [15] exploited the differ-
ence between the first and second harmonics ( H1 −H2 ), 
sound pressure level (SPL), and normalized amplitude 
quotient (NAQ). In [16], several factors were proposed 
to consider the effect of different vocal efforts between 
normal and shouted speech, including F0 , the ratio of 
closed phase to glottal cycle duration, the ratio of low-
frequency energy to high-frequency energy in the nor-
malized Hilbert envelope of the numerator of group delay 
(HNGD) spectrum, and the standard deviation of low-
frequency energy. The authors of [12] used the sharpness 
of the Hilbert envelope (HE) of linear prediction residual 
(LPR) signal around epoch locations and the amplitude 
of the HE of LPR signal around epoch locations features 
to detect different vocal modes. With all these features, 
the results showed that the features can be used to iden-
tify shouted speech/utterance. However, the feature 

extraction methods based on F0 and energy may not 
adequately capture the different shape of the glottal cycle 
structures between shouted speech and normal speech.

Alternatively, the LPR signal can be further analyzed 
to obtain promising results for discriminating shouted 
speech. The discrete cosine transforms of the integrated 
LPR (DCT-ILPR), residual mel-frequency cepstral coef-
ficients (RMFCC), and mel-power difference of spec-
trum in sub-bands (MPDSS) were proposed in [17] for 
characterizing the excitation source of shouted speech. 
The experimental results indicated that the DCT-ILPR, 
RMFCC, and MPDSS features outperformed three base-
line approaches that were proposed in previously men-
tioned works [12, 15, 16]. This is because the expectable 
representation based on the glottal cycle can be extracted 
by DCT-ILPR, the smooth spectral information of the 
excitation source can be largely represented by RMFCC, 
and the periodicity of the excitation source spectrum can 
be captured by MPDSS. However, these features, includ-
ing DCT-ILPR, RMFCC, and MPDCC, were worse than 
the mel-frequency cepstral coefficient (MFCC) as sum-
marized in [17]. The MFCC is a useful tool for extracting 
vibration signals that capture both linear and nonlinear 
properties of the signal [18], making it effective in cap-
turing the vocal tract source information. The MFCC is a 
popular feature in speech and speaker recognition tasks, 
and it is also a state-of-the-art feature for shouted speech 
detection. In this paper, the MFCC is considered the 
baseline feature and is used to combine other features to 
further improve the detection performance.

1.2 � Motivation and contributions
For the past few decades, researchers have not paid atten-
tion to phase-based features due to the phase wrapping 
problem. However, phase information contains powerful 
facts about speech signals, as suggested in [19]. The most 
commonly used phase feature is the modified group delay 
cepstral coefficient (MGDCC) feature. The MGDCC is 
determined as the negative derivative of the phase infor-
mation derived from the Fourier transform of the speech 
signal. The success of MGDCC has been demonstrated 
in many speech application studies [20–23]. However, 
the MGDCC is not only computed using phase infor-
mation but also both magnitude and phase information 
are used as the feature representatives, which we herein 
call magnitude-phase-related features. Therefore, it 
is believed that the performance of the MGDCC is not 
only based on phase information. In addition to using 
the magnitude-phase-related features, the relative phase 
(RP) feature is a phase-based feature that was proposed 
in our previous works [24–27]. This feature can effi-
ciently extract only phase information based on speech 
signals because of the reduced phase variation by cutting 
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positions, applying both the cosine and sine functions. 
The RP feature also provides promising performance 
for many speech applications, such as speaker recogni-
tion, speaker verification, conversion/synthesized speech 
detection, and replay attack detection. For example, the 
authors of [24] proposed RP information for speaker 
recognition and verification. The experimental results 
revealed that RP is useful because it can be combined 
with MFCC to substantially improve the performance 
of speaker recognition and verification. In [25], the RP 
feature was applied for conversion/synthesized speech 
detection. The results showed that RP could effectively 
present the loss of phase information based on the syn-
thesis/conversion techniques, because phase informa-
tion can be correctly captured by the normalization of 
cutting positions, cosine function, and sine function 
for addressing the phase wrapping problem [26]. This 
result implies that RP is useful for natural and conver-
sion/synthesized speech classification. Since magnitude 
and phase-based features have a complementary nature, 
the improved performance was obtained by combin-
ing the RP and MFCC features. In [27], the RP feature 
was applied and modified for replay attack detection. 
The author modified the RP feature using linear predic-
tion analysis estimated speech (LPAES) and LPR signals 
to replace the raw speech signals. The modified RP fea-
tures using LPAES and LPR signals are called LPAES-RP 
and LPR-RP features, respectively. Based on the replay 
attack detection task, the results showed that the RP, 
LPAES-RP, and LPR-RP features provided discrimina-
tion between the original and replayed speech because 
of the imperfection reduced by the recording and play-
back devices. Although RP-related features have been 
exploited for the abovementioned speech applications, 
less work has been done using conventional/modified 
RP features for shouted speech detection. The authors of 
this work hypothesize that the RP, LPAES-RP, and LPR-
RP information extracted by original speech, LPAES, 
and LPR signals may be useful for distinguishing shouted 
speech from normal speech because they are related to 
vocal tract sources, such as the input signal of the MFCC, 
and excitation sources, such as the input signal of the 
RMFCC. Therefore, the RP, LPAES-RP and LPR-RP fea-
tures are explored in this paper.

The present work is motivated by the phase informa-
tion formats of the RP, LPAES-RP and LPR-RP features in 
normal and shouted speech that can be used as discrimi-
native features. In addition, we propose to exploit the dif-
ferences between the RP and LPAES-RP features at time 
segment representative feature vector levels, as a new 
phase-based feature characterizing the excitation source 
to distinguish shouted speech from normal speech. The 
proposed feature is called the glottal source-based RP 

(GRP). Figure  1 shows different behaviors of the RP, 
LPAES-RP, LPR-RP, and GRP for normal and shouted 
speech. In the feature dimension, we can observe that 
the difference between normal and shouted speech is 
obtained by the phase format gaps of the RP, LPAES-RP, 
LPR-RP, and GRP features; particularly, the GRP that has 
a flat-intensity phase information characteristic in nor-
mal speech compared to shouted speech. Because RP and 
LPAES-RP are affected by vocal source information and 
are based on excitation source, such as the impulses with 
changing amplitude, we hypothesize that RP, LPAES-RP, 
LPR-RP, and GRP are useful for detection of shouted 
speech.

In this work, we focus on exploring phase-based fea-
tures for normal and shouted speech classification. The 
novel contributions are as follows: three phase-based 
features, viz., RP, LPAES-RP, and LPR-RP features, are 
first explored to distinguish shouted speech from normal 
speech. Second, we introduce a new relative phase fea-
ture, referred to as the GRP feature. The main idea of the 
proposed GRP feature is to use the differences between 
the RP and LPAES-RP features at time segment repre-
sentative feature vector levels. Based on the extraction of 
the RP/LPAES-RP/LPR-RP/GRP features, the phase for-
mats may provide distinct changes between normal and 
shouted speech because they are affected by vocal tract 
and excitation source information. Hence, it is expected 
that the conventional/modified RP features are use-
ful for detecting shouted speech. Finally, inspired by the 
success of score combination [24, 25, 27, 28], the detec-
tion performance improvement can be obtained based 
on a strong complementary nature between phase- and 
magnitude-based feature. Here, a score combination of 
MFCC and RP/LPAES-RP/LPR-RP/GRP is also employed 
to fuse the advantages of phase and magnitude-based fea-
tures to further improve the performance.

The remainder of this paper is organized as follows. 
Section  2 describes the conventional/proposed RP 
extraction, including the original RP, LPAES-RP, LPR-RP, 
and GRP. The shouted and normal speech classification 
setup is introduced in Section  3. Section  4 presents the 
results and discussion for a shouted and normal speech 
classification. Our conclusion and future work are pre-
sented in Section 5.

2 � Relative phase information
2.1 � Original RP extraction
Because the RP feature extraction is derived from the raw 
speech signal, the phase information is affected by different 
vocal tract source information between shouted and nor-
mal speech. Motivated by [17], magnitude-based features 
such as the MFCC are influenced by vocal tract source 
information, along with movement increase of lips and 
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lower jaw, providing encouraging results for the detection 
of shouted speech. Due to the relationship with magnitude 
and phase information, it is expected that RP is powerful 
for detecting shouted speech.

The short-term spectrum X(ω, t) , for the i-th frame of a 
discrete time domain speech signal x(n), is computed via 
the discrete Fourier transformation (DFT), as defined by:

where |X(ω, t)| and θ(ω, t) present the magnitude and 
phase spectra, respectively, at frequency ω and time t.

As summarized in [24], the changes in the phase infor-
mation are affected via the clipping position of the input 
speech waveform at the same frequency ω . To address this 
major obstacle based on the clipping position, the phase at 
a certain base frequency ω is kept constant, and the phase 
of other frequencies is estimated using the set frequency. In 
this paper, the base frequency, ωb , is set to 1000 Hz. Actu-
ally, this constant phase does not affect on the performance 
as summarized in [24]. Suppose that the phase of base fre-
quency, ωb , is set to 0; then, the spectrum can be found by 
the following equation:

(1)X(ω, t) = |X(ω, t)|ejθ(ω,t)

(2)X ′(ωb, t) = |X(ωb, t)|ejθ(ω
b ,t) × e−j(θ(ωb,t)),

whereas for the other frequencies, we can obtain the fol-
lowing spectrum:

Subsequently, the phase, θ̃ (ω, t) , is normalized to:

Finally, the phase information is mapped into coordi-
nates on a unit circle:

Further details of the RP feature extraction can be seen 
in [27].

2.2 � LPAES‑RP extraction
LPAES-RP was first introduced by [27] and provided 
promising results for replay attack detection. How-
ever, LPAES-RP has been less explored for normal and 
shouted speech classification. Thus, LPAES-RP is studied 
in this paper. It can be calculated using a similar process 
to the original RP feature extraction, except that it uses 
the LPAES signal, x̃(n) , to replace the raw speech signal, 
x(n). The LPAES of an input speech signal is constructed 
as follows:

(3)X ′(ω, t) = |X(ω, t)|ejθ(ω,t) × e
j ω

ωb
(−θ(ωb,t))

.

(4)θ̃ (ω, t) = θ(ω, t)+
ω

ωb
(−θ(ωb, t)).

(5)θ̃rp → {cos(θ̃(ω, t)), sin(θ̃(ω, t))}.

Fig. 1  Different behaviors of RP, LPR-RP, LPRES-RP, and GRP features in normal/shouted speech utterances: “Move out of my way”. a, b Normal 
and shouted speech of voice segment in time domain. c, d LPR signals for normal and shouted speech in time domain. e, f RP feature for normal 
and shouted speech. g, h LPAES-RP feature dimension for normal and shouted speech. i, j LPR-RP feature for normal and shouted speech. k, l GRP 
feature for normal and shouted speech
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where ak denotes a linear prediction coefficient and p 
presents the prediction order. The process of LPAES-RP 
feature extraction is displayed in Fig. 2. For the LPAES-
RP feature extraction, the total computed LPAES signal 
segments are not directly used as the input LPAES sig-
nal of the LPAES-RP feature, but they will be overlapped 
using a 10 ms frameshift and 20 ms frame length, as sug-
gested in [27]. Further details of the LPAES-RP feature 
extraction can be seen in [27].

2.3 � LPR‑RP extraction
From the previous work [17], magnitude-based features 
based on excitation source information play an impor-
tant role in normal and shouted speech classification 
because they provide different features between normal 
and shouted speech, by capturing the excitation source 
based on the LPR signal. Because magnitude and phase 
information have strong relationships in DFT, it is natural 
to believe that phase-based features derived from excita-
tion source information are also useful for distinguishing 
shouted speech from normal speech. Therefore, LRP-
RP is explored in this paper. It can be computed using a 
similar process to LPAES-RP feature extraction, except 
for using the LPR signal, r(n), to replace the LPAES sig-
nal, x̃(n) . The LPR signal is obtained from the predic-
tion error between the original speech samples and the 
LPAES samples, formulated as:

After finishing the LPR computation process in every 
frame, the total computed LPR signal segments are over-
lapped using a 10 ms frameshift and 20 ms frame length to 
produce the input LPR signal used for the LPR-RP feature 

(6)x̃(n) =

p

k=1

akx(n− k)

(7)r(n) = x(n)− x̃(n)

extraction. The process of LPR-RP feature extraction is dis-
played in Fig. 2

2.4 � GRP extraction
To extract of different shape of glottal cycle structure 
between shouted speech and normal speech, we propose 
a GRP feature extraction. As observed in the previous 
subsection, the phase information of LPR-RP is extracted 
using the difference between the original speech, x(n), and 
the LPAES signal, x̃(n) , in the time domain, namely, the 
LPC residual (or LPR) wave. The LPR-RP offer insights into 
the phase dynamics of speech. This feature representation 
distinguishes between shouted and normal speech, as illus-
trated in Fig. 1i-j. However, the direct difference between 
two phase information at the time segment representative 
feature vector level is less studied.

To bridge this gap, we introduce the GRP, a phase feature 
derived from the difference between RP and LPAES-RP 
information. We anticipate that this method will uncover 
nuanced differences and offer insights potentially over-
looked when analyzing each feature separately. Based 
on the motivation presented in Section  1.2, there is an 
expected possibility that the GRP information may play an 
important role in normal speech and shouted speech clas-
sification. As a result, we propose the GRP as a pioneering 
phase-centric feature for shouted speech detection.

Based on the speech production model, the observed 
speech signal x(n), can be expressed by the convolution of 
a glottal source, g(n), and vocal tract source inclusive of lip 
radiation characteristic, v(n), that is:

The equation above can also be expressed in the fre-
quency domain as follows:

(8)x(n) = g(n) ∗ v(n)

(9)X(ω, t) = G(ω, t)V (ω, t)

Fig. 2  Extraction process of the RP, LPAES-RP, LPR-RP, and proposed GRP features
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When the magnitude and phase information are con-
sidered, we can obtain:

Next, by discarding the magnitude information, the 
phase information can be defined as:

To compute the phase information mainly contain-
ing the glottal source, a new formula can be expressed as 
follows:

Because the direct use of original phase information 
from DFT results in the phase wrapping issue, alternative 
representations like RP and LPR-RP are employed. These 
are based on the original speech and vocal tract source, 
respectively.

The RP (relative phase) feature vector, denoted as θ̃rp , 
encapsulates the phase information derived from the 
original speech signal. Similarly, the LPAES-RP feature 
vector, represented as θ̃lpa , captures the phase informa-
tion based on the vocal tract source.

Our study introduces the GRP feature, which is essen-
tially the difference between the RP and LPAES-RP fea-
ture vectors. Mathematically, the GRP can be expressed 
as:

In this equation, θ̃g represents the GRP feature vector 
for a given frame of data. The subtraction operation here 
denotes the difference between the corresponding values 
of the RP and LPAES-RP feature vectors. Essentially, for 
each value in the RP feature vector, the corresponding 
value in the LPAES-RP vector is subtracted, resulting in 
the GRP feature vector for that frame.

The entire process of deriving the GRP feature vector 
is illustrated in Fig. 2. This figure provides a step-by-step 
visual representation of how the original speech signal 
and the vocal tract source signal are transformed into 
their respective phase representations and subsequently 
used to compute the GRP feature.

3 � Experimental setup
3.1 � Database
The experiments were conducted on the shouted normal 
electroglottograph speech (SNE-Speech) corpus, which 
is a publicly available database1 that can be accessed for 

(10)
|X(ω, t)|ejθx(ω,t) = |G(ω, t)||V (ω, t)|ej(θg (ω,t)+θv(ω,t))

(11)θx(ω, t) = θg (ω, t)+ θv(ω, t)

(12)θg (ω, t) = θx(ω, t)− θv(ω, t)

θ̃g = θ̃rp − θ̃lpa

free download. The SNE-Speech was recorded using 
normal and shouted speech with corresponding electro-
glottograph (EGG) signals based on 21 speakers, specifi-
cally, 10 females (F) and 11 males (M). The speech, along 
with the corresponding EGG, was collected using a con-
trolled environment. The sampling rate was set at 44.1 
kHz with sample precision of 16 bits. All speakers, from 
different geographical regions of India, were requested 
to utter English sentences. The SNE-Speech database 
was composed of 1200 sentences. Further details of the 
SNE-Speech can be found in [17]. In this paper, we fol-
lowed the standard sampling rate for our experiment as 
suggested in [17]. Therefore, speech signals of the SNE-
Speech database were downsampled at 16 kHz for all 
experiments.

3.2 � Acoustic features
In the experiments, the MFCC was used as the baseline 
feature to compare the performance of RP, LPAES-RP, 
LPR-RP, and the proposed GRP features. The analysis 
conditions of all features are described as follows:

•	 The MFCC feature [17] was computed using 20 ms 
frame length with 50% overlap. The Hamming win-
dow is applied for each frame. We used discrete Fou-
rier transform (DFT) for every 512 samples to calcu-
late 256 components of the magnitude spectrum. A 
total number of 40 filters in the mel-filterbank were 
set, and the first 20 coefficients were used as advised 
in [17].

•	 The MGDCC feature [23] was extracted using 
frameshift of 10 ms and frame length of 25 ms. Here, 
the Hamming window is used for each frame. The ρ 
and γ parameters were set to 0.4 and 0.9, respectively, 
as suggested in [23]. Here, 12-dimensional coeffi-
cients were exploited for our experiments.

•	 The RP feature [27] was extracted using 2.5 ms frame 
range of pseudo pitch synchronization, 12.5 ms frame 
length, and 5 ms frameshift. Here, the Hamming 
window is utilized for each frame. DFT for every 256 
samples was employed to obtain a phase spectrum 
with 128 components. Then, we used cosine and sine 
functions to obtain the RP features. Here, 38-dimen-
sional RP coefficients (i.e., 19 cos(θ̃) and 19 sin(θ̃ ) ) 
were exploited as advised in [25, 27].

•	 The LPAES-RP feature [27] was calculated using the 
same parameters and the number of dimensional 
vectors as those used with the RP feature extraction, 
except for the input signal. The extracted and over-
lapped LPAES signal segments were computed using 
20 ms frame length and 10 ms frameshift to produce 
the input LPRES signal of LPR-RP feature extraction.

1  https://​github.​com/​shikh​abagh​el/​SNE-​Speech-​Corpus

https://github.com/shikhabaghel/SNE-Speech-Corpus
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•	 The LPR-RP feature [27] was computed using the 
same parameters and the number of coefficients as as 
those used with the RP feature extraction, except for 
the input signal. The extracted and overlapped LPR 
signal segments were computed using 20 ms frame 
length and 10 ms frameshift to produce the input 
LPR signal of LPAES-RP feature extraction.

•	 The GRP feature was extracted using the difference 
between the RP and LPAES-RP coefficients. Here, we 
used 38-dimensional GRP for the experiments.

3.3 � Classifier
Although the success of a deep learning-based classifier 
has been reported for various speech-related applications 
[29], the classification performance strongly depends 
on large amounts of training data [30]. In this paper, we 
focus on feature extraction methods for the classifica-
tion between shouted speech and normal speech, but not 
classification methods. Therefore, we adopt a basic classi-
fier. Here, the exploitation of the Gaussian mixture model 
(GMM) was very simple but provided the expected 
results on the detection of shouted speech and text-
dependent automatic speaker verification tasks under 
limited training/testing data [31, 32]. Here, the GMM 
provided by VLfeat tookit2 was utilized for normal and 
shouted speech classification. The decision of whether 
the given speech is normal or shouted was obtained by 
the logarithmic likelihood ratio as:

where O is the given feature vector of the input speech, 
and �normal and �shouted denote the GMMs for normal and 
shouted speech, respectively. The RP, LPAES-RP, LPR-
RP, proposed GRP, and MFCC features were used as the 
input features.

In this paper, two GMMs for normal and shouted 
speech models were fixed to 512-components. Both 
models were trained using an expectation maximization 
algorithm with maximum likelihood estimation on nor-
mal and shouted utterances. As seen in Section 3.1, the 
SNE database is a small database. Therefore, the speaker-
independent 5-fold cross-validation was used in all the 
experiments as suggested in [17]. Here, from the first 
fold to the fourth fold, the speech signals of 17 different 
speakers were used for training, and the speech signals of 
the remaining 4 speakers were used for conducting the 
testing sets. In the final fold, the speech signals of 16 dif-
ferent speakers and the remaining 5 speakers were used 
for training and testing sets, respectively.

(13)∧(O) = log p(O|�normal)− log p(O|�shouted),

Our previous studies found that the score combina-
tion can provide classification performance improve-
ment because of the complementary nature of phase and 
magnitude information. In this paper, we also applied the 
score combination introduced in [33] to produce a new 
decision score Lcomb:

where α is the weighting coefficient, Lfirst and Lsecond rep-
resent the GMM log-likelihoods derived from the first 
and second chosen features, respectively, and L̄first and 
L̄second denote the averaged Lfirst and Lsecond over all train-
ing data, respectively.

3.4 � Evaluation metrics
In this paper, the balanced F-score ( F1 score) in terms 
of percentage was used to verify the performance of the 
proposed methods, as suggested in [17]. It was the har-
monic mean of precision and recall as follows:

where the true positive (TP) score is the number of 
shouted speech utterances accurately predicted by the 
classifier. The false positive (FP) score highlights the 
number of shouted speech utterances inaccurately pre-
dicted by the classifier, while the false negative (FN) score 
is the number of normal speech utterances inaccurately 
predicted by the classifier. In this paper, after all the clas-
sification results were tested on the frame-level, the total 
scores on the frame-level results based upon the chosen 
speech were averaged to produce the normal/shouted 
speech decision. For the speech decision, a positive aver-
age score was defined as normal speech, while a negative 
value was defined as shouted speech.

4 � Results and discussion
4.1 � Results on the original SNE‑speech corpus
This subsection presents the F1 scores investigated using 
the original speech of the SNE-speech database. First, 
because the performance of LPR-RP, LPAES-RP, and GRP 
features is influenced by the order of prediction of the LP 
analysis, which typically spans between 8 and 20, preserv-
ing essential resonant details of the vocal tract system as 
summarized in [34], we find the suitable LP order for the 
LPAES-RP, LPR-RP, and GRP features. Table  1 reports 
the performance of the LPAES-RP, LPR-RP, and GRP fea-
tures in terms of different LP orders. After obtaining the 

(14)

Lcomb = (1− α)Lfirst + αLsecond ,

α =
L̄first

L̄first + L̄second
,

(15)
F1 =

2

Recall−1 + Precision−1
× 100,

Recall =
TP

TP + FN
,Precision =

TP

TP + FP
,

2  http://​www.​vlfeat.​org

http://www.vlfeat.org
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best results for LPAES-RP, LPR-RP, and GRP using the 
appropriate LP order, we turned to the receiver operating 
characteristic (ROC) curve and its associated area under 
the curve (AUC) values to distinguish between shouted 
and normal classes. The ROC curve [35] plots the true 
positive rate (sensitivity) against the false positive rate 
(1-specificity) as the discrimination threshold is adjusted 
for a binary classifier. The area under the ROC curve 
(AUC) provides a concise summary of the classifier’s 
overall performance. Figure  3 displays the ROC curves 

for RP, LPAES-RP, LPR-RP, and GRP, while Table 2 pre-
sents the corresponding AUC values for these features. 
By comparing various LP orders, the LPAES-RP with 10 th 
LP order, LPR-RP with 14 th LP order, and GRP with 20 th 
LP order yielded the best result and had an F1 of 84.24%, 
88.60%, and 93.78%, respectively. Our findings demon-
strate that the LPAES-RP and LPR-RP features achieve 
optimal detection of shouted speech from normal speech 
at the 10 th and 14 th LP orders, respectively. Meanwhile, 
the 20 th LP order for the GRP method seems to strike an 

optimal balance, capturing the intricacies of two-phase 
information more effectively than other orders, leading 
to the observed high AUC value. When the RP, LPAES-
RP, LPR-RP, and GRP with the suitable LP order were 
compared using the ROC curves and AUC values, we can 
find that the GRP feature provided the best performance 
under clean conditions. This superior performance of 
GRP is attributed to its ability to optimally balance and 
capture the intricacies of RP and LPAES-RP information. 
Furthermore, GRP provides more discriminative phase 

Table 1  Performance comparison ( F1 score) of LPAES-RP, LPR-RP, and GRP

LP orders 8 10 12 14 16 18 20 22

LPAES-RP 82.76 84.24 81.10 80.62 79.63 79.72 80.10 81.41

LPR-RP 86.98 85.99 86.98 88.60 88.57 87.48 86.46 85.90

GRP 84.13 84.56 86.83 90.17 92.76 93.38 93.78 93.44

Table 2  AUC outcomes associated with RP, LPAES-RP, LPR-RP, 
and GRP

Features AUC​

RP 0.92

LPAES-RP 0.93

LPR-RP 0.94

GRP 0.98

Fig. 3  ROC representations corresponding to RP, LPAES-RP, LPR-RP, and GRP
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information than using RP, LPAES-RP, or LPR-RP alone, 
as evidenced by the highest value via the AUC in Table 2. 
Next, the best results of the LPAES-RP, LPR-RP, and GRP 
features were combined and compared with the baseline 
of the MFCC feature. Figure  4 shows the results com-
pared with MFCC and RP features.

It can be observed from Fig. 4 that the RP, LPAES-RP, 
and LPR-RP features did not outperform the MFCC and 
MGDCC features. This is because the magnitude-related 
discrimination power provided more exceptional results 
than the phase information. Nevertheless, the proposed 
GRP feature is distinct because it blends two types of 
discriminative phase information. Unlike RP, LPAES-
RP, and LPR-RP, GRP integrates and balances the com-
plexities of both RP and LPAES-RP. This distinct quality 
improves decision-making, As a result, the classifier 
performance of GRP is on par with other methods like 
MFCC and MGDCC, with all three exhibiting a similar 
AUC value of 0.98.

Next, multiple score combinations of RP/LPAES-RP/
LPR-RP/GRP/MGDCC features and RP/LPAES-RP/LPR-
RP/GRP/MFCC/MGDCC features were investigated 
to consider the complementary nature between phase-
based features and different phase/magnitude-based 
features. As seen in Fig.  4, the combined score using 

only phase-based features provided slight improvement 
compared to individual phase-based features, because 
the complementary nature of two phase-based features 
simplifies the ambiguous decision. Next, as shown in the 
combined score of MGDCC and RP/LPAES-RP/LPR-RP/
GRP, we can see that the combinations of magnitude-
phase-related features (MGDCC) and phase-based fea-
tures performed better than the score combination of 
using only phase-based features. The reason is that mag-
nitude-phase information is introduced to be combined 
with the phase-based features. Observing the perfor-
mance of the GRP feature as shown in Fig. 4, we find that 
the proposed GRP features outperformed two standard 
features, namely, the MFCC and MGDCC. Moreover, the 
score combination of the MFCC/MGDCC and GRP can 
achieve better performance, compared to using the indi-
vidual feature. This indicates that the proposed feature is 
competitive with the baseline MFCC/MGDCC features 
under clean condition.

When the score combination of phase- and magnitude-
based features was considered, we can observe that the 
combined scores of the MFCC and the RP/LPAES-RP/LPR-
RP/GRP provided performance improvement compared 
with individual features, because of the strong complemen-
tary nature of phase and magnitude information. When the 

Fig. 4  Performance comparison ( F1 score) of RP, LPAES-RP, LPR-RP, GRP, MFCC, and multiple score combinations
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error reduction rate (ERR) was considered based on 
EER =

(100−FMFCC
1 )−(100−Fcomb

1 )

(100−FMFCC
1 )

× 100 , where FMFCC
1  and 

Fcomb
1  are the results of F1 obtained from the MFCC and the 

score combination of MFCC and MGDCC/RP/LPAES-RP/
LPR-RP/GRP, we found that the F1-score ERR from the 
MFCC was reduced. Table 3 summarizes the ERR from the 
MFCC using the combination of the MFCC and RP/LPAES-
RP/LPR-RP/GRP. It can be observed that the score combi-
nation of the MFCC and GRP provided the best EER, 
followed by the score combination of the MFCC and LPR-
RP. This indicates that combing phase and magnitude infor-
mation extracted from the different input signal (MFCC 
with LPR-RP/GRP) provided better improvement than 
combing phase and magnitude information extracted from 
the same/similar input signal (MFCC with MGDCC/RP/
LPAES-RP) because the score combination based on the 
feature diversity with input signal diversity resulted in more 
accurate decision-making. Similar trade can be summarized 
in [36]. Because phase- and magnitude-based features 
(MFCC and RP/LPAES-RP/LPR-RP/GRP) have better com-
plementary nature than magnitude-phase-related and 
phase-based features (MGDCC and RP/LPAES-RP/LPR-
RP/GRP) as suggested in [26, 27], the combined scores of 
the MFCC and RP/LPAES-RP/LPR-RP/GRP are further 
considered under noisy conditions for the performance of 
the shouted speech detection.

4.2 � Results under noisy conditions
In [37], the speaker identification by the combination 
of MFCC and RP in noisy conditions was remarkably 
improved in comparison with the use of only MFCC. This 
subsection presents the results of the F1 scores inves-
tigated using the noisy speech of the SNE-speech data-
base. We used two types of noises, namely, factory 1 and 
babble noise, of the NOISEX-9250 database [38]. Factory 
1 noise was combined with the original speech of the 
SNE-speech database to generate noisy speech under the 
condition of electrical welding equipment. Conversely, 
babble noise was combined with the original speech of 

the SNE-speech database to generate noisy speech under 
the condition of multiple speakers speaking in a canteen. 
Here, noise combined with three different signal-to-noise 
ratios (SNR), namely, 15 dB, 10 dB, 5 dB, was used to arti-
ficially corrupt all original/clean speech. Figure 5 reports 
the trends of classification performance of the features 
against noisy conditions. Based on all classifiers trained 
on clean speech, under factory 1 noise conditions, it can 
be seen that the MFCC outperformed the RP/LPAES-RP/
GRP because the phase information is sensitive to noise, 
as summarized in [39, 40]. Moreover, we can observe 
that phase information using the differences between the 
RP and LPAES-RP features provided more sensitivity to 
noise. This means that the GRP feature performed worse 
than the RP, LPAES-RP, and LPR-RP features. However, 
it can be seen that the MFCC provided slightly better 
performance and performed worse than LPR-RP when 
the classifiers were tested on SNR = 15dB, 10dB and 5dB, 
respectively. This suggests that the phase information 
derived from the LPR signal may give more robustness 
to noise. When we consider the results on babble noise, 
it can be observed that the LPR-RP outperformed the 
MFCC/RP/LPAES-RP/GRP. This result indicates that the 
LPR-RP is powerful for the detection of shouted speech 
under noisy conditions.

Next, although using single LPR-RP provided prom-
ising results on the detection of shouted speech, the 
performance improvement was largely obtained by com-
bining the MFCC and LPR-RP, as summarized in the 
previous subsection. In a similar way, the performance 
improvement was largely obtained by combining the 
MFCC and RP/LPAES-RP. These outcomes confirm the 
importance of the RP, LPAES-RP and LPR-RP features 
in distinguishing shouted speech from normal speech 
under noisy conditions, because they can be combined 
with magnitude-based features, such as the MFCC. From 
these results, speech enhancement design in front of 
the feature extraction may be needed to make the phase 
information of the RP/LPAES-RP/LPR-RP/GRP robust to 
noise, so that more believable results can be generated to 
detect noisy shouted speech.

4.3 � Analytic illustration of the GRP information 
degradation under noise conditions

To better visualize the GRP feature characteristic degra-
dation under noise condition described in the previous 
subsections, this subsection illustrates the phase infor-
mation degradation under noise conditions.

Figure  6 shows the RP, LPAES-RP, LPR-RP, and GRP 
feature information of a shouted utterance example cor-
rupted by factory 1 noise at SNR = 10, compared to clean 
shouted and noisy normal utterances. Comparing Fig. 6 

Table 3  The performance of F1-score and ERR compared to the 
individual MFCC

Score combination ERR ( %) F1 score ( %)

MFCC 0.00 92.91

MFCC+MGDCC 46.12 96.18

MFCC+RP 44.85 96.09

MFCC+LPAES-RP 44.29 96.05

MFCC+LPR-RP 48.94 96.38

MFCC+GRP 57.12 96.96



Page 11 of 14Phapatanaburi et al. EURASIP Journal on Audio, Speech, and Music Processing          (2024) 2024:2 	

on the left rows, the RP, LPAES-RP, LPR-RP, and GRP 
feature information provided the difference between 
clean and noisy shouted speech because they were sensi-
tive to noise. Moreover, we can noticeably observe that 
GRP provided the flat-intensity phase information char-
acteristic, which is similar to the phase information char-
acteristics of normal speech.

To quantify the distinction between noisy shouted and 
normal speech, we use the Euclidean distance measure. 
Specifically, we compute the distance as:

where θ̃ns and θ̃nn the phase values for the jth component 
of the noisy shouted and normal phase feature vectors, 
respectively. A smaller value of D indicates that the two 
feature vectors are more similar.

From the left and right columns of Fig. 6, the computed 
distances for RP, LPAES-RP, LPR-RP, and GRP are 5.87, 
5.82, 6.32, and 0.84, respectively. The results indicated that 
the GRP feature provides a slight difference between noisy 

(16)

D =

√

∑

j

[cos(θ̃nsj )− cos(θ̃nnj )]2 + [sin(θ̃nsj )− sin(θ̃nnj )]2

shouted speech and normal speech. This suggests that using 
the GRP information is more sensitive to the RP/LPAES-
RP/LPR-RP information obtained from the speech/LPAES/
LPR signals. Moreover, due to the slight difference between 
noisy shouted speech and normal speech leading to ambig-
uous decision score, combining the GRP scores with the 
MFCC score hardly improve the classification performance.

5 � Conclusion and future work
In this paper, we explored the importance of phase-
based features for the detection of shouted speech. The 
novel contributions of this work are highlighted as fol-
lows. First, we introduced three phase-based features, 
viz., RP, LPAES-RP, and LPR-RP features, for shouted and 
normal speech classification. Second, we first proposed 
the difference between the RP and LPAES-RP features 
at the time segment representative feature vector level 
as a new RP feature, called the GRP feature. Finally, a 
score combination of the MFCC and the RP/LPAES-RP/
LPR-RP/GRP features was applied to fuse the comple-
mentary advantages for further improving the detection 
performance. The significance of the proposed features 

Fig. 5  Classification performance of MFCC, RP, LPAES-RP, LPR-RP, GRP, MFCC+RP, MFCC+LPAES-RP, MFCC+LPR-RP, and MFCC+GRP
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and score combination was investigated using the SNE-
Speech corpus. The experimental results showed that 
the RP, LPAES-RP and LPR-RP features were useful for 
the detection of shouted speech and provided F1 scores 
of 83.54%, 84.24%, and 88.60%, respectively. Next, we 
observed that the proposed GRP feature, which provided 
an F1 score of 93.78%, demonstrated better results com-
pared to the standard MFCC feature, which had an F1 
score of 92.31%. Moreover, compared with using individ-
ual features, the score combination of the MFCC and RP/
LPAES-RP/LPR-RP/GRP yielded an improved detection 
performance, especially the combination of the MFCC 
and GRP, which resulted in an F1 score of 96.96%. Perfor-
mance analysis in noisy speech environments reported 
that the score combination of the RP/LPAES-RP/LPR-RP 
and MFCC provided more robust classification. These 
results indicated that the RP features are very useful for 
detecting shouted speech.

In future work, because the phase information is sen-
sitive to noise, making classification performance lower 
than our expectation, we plan to investigate speech/
feature enhancements to further improve the robust-
ness of the RP/LPAES-RP/LPR-RP/GRP features to 
noise. In addition, It is worth noting that GRP is calcu-
lated from RP and LPAES-RP. These two latter RPs are 

also influenced by noisy conditions. Thus, GRP is influ-
enced doubly. To overcome this problem, the GRP will be 
extracted using glottal source wave directly [41], a topic 
for future investigation. Lastly, we have a plan to use deep 
neural network-based classifiers such as convolutional 
neural networks instead of a GMM-based classifier.

Abbreviations
RP	� Relative phase
LPAES-RP	� Linear prediction analysis estimated speech-based relative 

phase
LPR-RP	� Linear prediction residual-based relative phase
GRP	� Glottal source-based relative phase
SNE-Speech	� Shouted normal electroglottograph speech
MFCC	� Mel-frequency cepstral coefficient
F0	� Fundamental frequency
H1 −H2	� The difference between the first and second harmonics
SPL	� sound pressure level
NAQ	� Normalized amplitude quotient
HNGD	� Hilbert envelope of the numerator of group delay
HE	� Hilbert envelope
LPR	� Linear prediction residual
DCT-ILPR	� The discrete cosine transforms of the integrated Linear predic-

tion residual
RMFCC	� Residual mel-frequency cepstral coefficients
MPDSS	� Mel-power difference of spectrum in sub-bands
MGDCC	� Modified group delay cepstral coefficient
LPAES	� Linear prediction analysis estimated speech
DFT	� Discrete Fourier transformation
GMM	� Gaussian mixture model

Fig. 6  Different behaviors of RP, LPR-RP, LPRES-RP, and GRP features in normal/shouted speech utterance: “Move”. a Clean and noisy shouted speech 
in time domain illustrated as blue and red lines respectively. b Noisy normal speech in time domain illustrated as a black line. c RP feature for clean 
and noisy shouted speech. d RP for noisy shouted and normal speech. e LPAES-RP feature for clean and noisy shouted speech. f LPAES-RP for noisy 
shouted and normal speech. g LPR-RP feature for clean and noisy shouted speech. h LPR-RP feature for noisy shouted and normal speech. i GRP 
feature for clean and noisy shouted speech. j GRP feature for noisy shouted and normal speech
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MANOVA	� Multivariate analysis of variance
ERR	� Error reduction rate
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