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Abstract 

Speech signals are often distorted by reverberation and noise, with a widely distributed signal-to-noise ratio (SNR). 
To address this, our study develops robust, deep neural network (DNN)-based speech enhancement methods. We 
reproduce several DNN-based monaural speech enhancement methods and outline a strategy for constructing data-
sets. This strategy, validated through experimental reproductions, has effectively enhanced the denoising efficiency 
and robustness of the models. Then, we propose a causal speech enhancement system named Supervised Attention 
Multi-Scale Temporal Convolutional Network (SA-MSTCN). SA-MSTCN extracts the complex compressed spectrum 
(CCS) for input encoding and employs complex ratio masking (CRM) for output decoding. The supervised attention 
module, a lightweight addition to SA-MSTCN, guides feature extraction. Experiment results show that the supervised 
attention module effectively improves noise reduction performance with a minor increase in computational cost. The 
multi-scale temporal convolutional network refines the perceptual field and better reconstructs the speech signal. 
Overall, SA-MSTCN not only achieves state-of-the-art speech quality and intelligibility compared to other methods 
but also maintains stable denoising performance across various environments.

Keywords Supervised attention, Monaural speech enhancement, Complex compressed spectrum, Complex ratio 
mask, Multi-scale temporal convolutional network

1 Introduction
Speech enhancement has numerous applications, includ-
ing hearing aids, robust speech recognition, and video 
conferencing. The main objective of speech enhance-
ment is to minimize background noise, thereby improv-
ing the quality and intelligibility of the enhanced speech. 
In real application scenarios such as video conferencing, 
the signal-to-noise ratio (SNR) of the speech signal is 
usually not very low, which requires the speech enhance-
ment method to avoid causing distortion. In addition, 

the speech signal will be affected by reverberation, which 
requires speech enhancement methods for robust perfor-
mance. Therefore, this study aims to explore how to build 
a training dataset for robust speech enhancement and 
propose a better monaural speech enhancement model 
with both performance and robustness.

Traditional single-channel speech enhancement meth-
ods such as spectral subtraction [1], Wiener filtering 
[2], and minimum mean squared error speech estimator 
[3, 4] often require estimation of the noise power spec-
tral density (PSD) or the a priori SNR. These traditional 
methods are often effective in suppressing stationary 
noise. Whether using voice activity detector [5], mini-
mum statistics [2, 6], or recursive averaging [7–9], it is 
difficult to estimate the noise PSD effectively under non-
stationary noise conditions. Error in noise PSD estima-
tion leads to enhanced speech containing residual noise 
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or speech distortion. This results in these methods being 
unable to process speech signals with non-stationary 
noise effectively.

Owing to the problems of traditional speech enhance-
ment methods, including low upper-performance lim-
its and difficulty in handling non-stationary noise, some 
researchers apply deep neural networks (DNNs) to 
speech enhancement [10–12] and achieve excellent per-
formance. Zhang et al. [11] propose a new a priori SNR 
estimation structure called Deep Xi-TCN which con-
tains a temporal convolutional network (TCN) [13, 14] 
with residual connections [15, 16]. For speech enhance-
ment, they [10, 11] substitute the a priori SNR into a 
noise PSD estimator based on minimum mean square 
error (MMSE) called DeepMMSE. These methods clev-
erly combine traditional speech enhancement methods 
with DNNs and have the advantage of low computational 
cost. However, these methods [10, 11] do not provide an 
accurate estimate of the a posteriori SNR, nor do they 
enhance the noisy phase.

Some masking-based methods incorporating DNNs, 
such as the ideal binary mask (IBM) [17, 18] and ideal 
ratio mask (IRM) [19, 20], tend to mask the magnitude 
spectrum to denoise. Zhang et al. [21] propose joint log-
power spectra (LPS) and IRM-based temporal convolu-
tional network called multi-scale TCN (MSTCN). Unlike 
a traditional TCN, MSTCN stacks the input features 
forward into each residual block to enlarge and refine 
the receptive field of the model. Multi-objective learn-
ing enables the model to integrate the advantages of IRM 
and LPS, thereby further enhancing speech enhancement 
performance.

Magnitude masking-based methods do not consider 
the effect of phase information on speech enhance-
ment performance, but studies [22–24] show that phase 
recovery contributes significantly to improving speech 
enhancement performance. Later, complex ratio mask 
(CRM) [25–27] and phase-sensitive mask (PSM) [28] 
estimation are used to enhance the complex spectrum 
in the frequency domain, to reconstruct the real and 
imaginary components of noisy speech. Hu et  al. [26] 
propose a deep complex convolution recurrent network 
(DCCRN) capable of estimating CRM. To simulate the 
complex multiplication, they improve the convolutional 
recurrent network (CRN) using complex convolution 
and complex LSTM. Scale-invariant source-to-noise 
ratio (SI-SNR) is used as the loss function to replace the 
mean square error (MSE) loss. DCCRN achieves a very 
powerful performance and wins first place in the 1st deep 
noise suppression (DNS) challenge. However, a study [29] 
shows that within DCCRN, complex-valued DNNs and 
real-valued DNNs achieve similar performance, although 
complex-valued DNNs require more computational cost. 

Le et al. [27] extend the dual-path recurrent neural net-
work (DPRNN) [30] and propose a dual-path convolu-
tion recurrent network (DPCRN) for estimating CRM. 
DPCRN replaced the recurrent neural network (RNN) in 
CRN with DPRNN modules and captured both temporal 
and frequency dependence. DPCRN has comparable per-
formance to DCCRN and is ranked third in the 3rd DNS 
[31]. The advantages of DPCRN are that it includes only 
0.8M model parameters and requires a much smaller 
number of multiply-accumulate operations (MACs) 
than DCCRN. Incorporating phase information enables 
the aforementioned models [25–28, 30] to achieve bet-
ter performance than models using only the magnitude 
spectrum. Consequently, research on speech enhance-
ment methods involving the phase spectrum and com-
plex spectrum become more widespread.

There are also models [32, 33] that recover both noisy 
magnitude spectrum and noisy complex spectrum. Li 
et  al. [32] propose a parallel structure for coarse and 
refined estimation named Glance and Gaze Network 
(GaGNet). GaGNet contains spectral feature extrac-
tion modules and multiple stacked Glance-Gaze mod-
ules (GGMs). The GGM is a dual structure in which 
the glance path masks the magnitude spectrum of noisy 
speech, and the gaze path compensates for the complex 
spectrum. Zhang et al. [33] propose a phase-aware dual-
path dilated convolutional network (PhaseDCN) that 
estimates the complex spectrum and IRM. PhaseDCN 
interacts with information in a dual path using an atten-
tion-gating factor. Therefore, PhaseDCN can combine 
the magnitude and phase information of noisy speech 
for speech enhancement. Both GaGNet and PhaseDCN 
achieve good objective performance in the case of their 
smaller MACs.

Spectral mapping is a more direct way to reconstruct 
noisy speech. Tan and Wang [34] propose a novel CRN 
which integrates a convolutional encoder-decoder and 
LSTM for mapping the clean magnitude spectrum with-
out using future information. Tan and Wang [35] propose 
an improved model of CRN called a gated convolutional 
recurrent neural network (GCRN) for mapping the com-
plex spectrum. GCRN still employs the encoder-decoder 
architecture, with a dual-path decoder for estimating 
the enhanced complex spectrum. In addition, GCRN 
replaces 2-D convolution and deconvolution with gated 
linear unit blocks.

Another class of methods involves end-to-end speech 
enhancement [36–38] in the time domain, which can 
avoid additional short-time Fourier transform (STFT) 
and inverse STFT (iSTFT) operations. Luo and Mesga-
rani [36] propose Conv-TasNet, which uses dilated 1-D 
convolutional blocks instead of LSTM to improve model 
applicability. In Conv-TasNet, the mixture waveform is 
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modeled using a convolutional encoder-decoder archi-
tecture, which consists of an encoder with non-negativity 
constraints on its output and a linear decoder that inverts 
the encoder output back to the sound waveform. Evalu-
ated in terms of both objective distortion measurements 
and listeners’ subjective quality assessments, Conv-Tas-
Net exceeds several ideal temporal-frequency amplitude 
masks in two-speaker speech separation and speech 
enhancement [39] tasks. As attention has attracted sub-
stantial interest in the deep learning field, Pandey and 
Wang [37] propose a dense CNN with self-attention 
(DenseCNN). DenseCNN utilizes an encoder-decoder 
architecture with skip connections and comprises a 
dense block and attention block at each layer of the 
encoder-decoder. In addition, sub-pixel convolution is 
used to avoid checkerboard artifacts in the output signal. 
Compared to spectral magnitude loss, phase-constrained 
magnitude loss offered better estimation for both noise 
spectrum and clean spectrum. Therefore, phase-con-
strained magnitude loss [37] enhances objective perfor-
mance while reducing the issue of artifacts.

Our study compares experiments on reverberation, 
dataset duration, and language type. This leads to the 
development of a dataset construction strategy that 
improves model robustness. Following this, we introduce 
our causal speech enhancement model. Building on our 
previous research on Multi-Scale Temporal Convolu-
tional Networks (MSTCN) [21], we find that refining the 
time-frequency (T-F) analysis granularity of features sig-
nificantly improves both the performance and robustness 
of speech enhancement models.

We propose a model known as supervised attention 
multi-scale TCN (SA-MSTCN) for monaural speech 
enhancement. SA-MSTCN comprises two stages: the 
masking stage and the compensation stage. In the mask-
ing stage, we introduce gated TCN and a novel super-
vised attention U 2-LSTM (SAU2-LSTM) for fixed-length 
and dynamic long-term modeling. Both the magnitude 
compressed spectrum (MCS) and complex compressed 
spectrum (CCS) are inputted into these long-term mod-
eling modules for feature extraction. MSTCN then 
analyzes the extracted features to obtain CRM, which 
enhances the complex spectrum. The compensation 
stage aims to further suppress residual noise and recover 
spectral details, utilizing another U 2-LSTM to refine the 
masking stage enhanced spectrum. Compared with mod-
els like DCCRN, GCRN, and ConvTasNet, our model 
shows excellent speech quality and intelligibility and 
exhibits stronger generalization capabilities.

The rest of this paper is organized as follows. In Sec-
tion 2, the proposed SA-MSTCN is introduced in detail, 
including the supervised attention network U 2-LSTM, 
multi-scale temporal convolutional module (MSTCM) 

and CCS. In Section 3, the experimental setup, baseline 
model, and training strategies are described. Section  4 
discusses the effects of language, duration, and reverber-
ation on model robustness. In Section 5, ablation studies 
and comparative experiments are performed to inform 
the model design. Finally, conclusions are presented in 
Section 6.

2  Proposed Supervised Attention Multi‑Scale TCN 
for speech enhancement

In this section, we introduce the details of the proposed 
SA-MSTCN. As shown in Fig. 1, SA-MSTCN includes a 
masking stage and a compensation stage and four mod-
ule types: U 2-LSTM, SAU2-LSTM, gated temporal con-
volutional module (GTCM), and MSTCM. The training 
process of SA-MSTCN is conducted in two steps. In the 
first step, only the parameters of the masking stage are 
updated. In the second step, the parameters of the mask-
ing stage are frozen, and then the parameters of the com-
pensation stage are updated. In the masking stage, we 
implement a time-dependent feature extraction strategy 
for both CCS and MCS. Here, SAU2-LSTM is utilized 
for dynamic temporal feature extraction of CCS and 
MCS, along with fixed-size temporal feature extraction 
specifically for MCS. The output from the last MSTCM 

Fig. 1 Illustration of the proposed two-stage speech enhancement 
method
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undergoes convolution by two 1-D convolution layers, 
each with a kernel size of 1, to derive the real and imagi-
nary components of the CRM. With post-processing, we 
can calculate the enhanced complex spectrum.

Given that the enhanced complex spectrum may still 
contain residual noise or distortions, the speech quality, 
and intelligibility are further refined in the compensa-
tion stage. In the compensation stage, both the enhanced 
complex spectrum and the noisy complex spectrum are 
inputted into U 2-LSTM for computing the compensa-
tion values. The final compensated complex spectrum is 
obtained by summing the enhanced complex spectrum 
with these compensation values.

The specifics of the four modules-CCS, loss function, 
and post-processing-will be elaborated in the subsequent 
subsections, providing a comprehensive understanding 
of each component’s role and functionality in the system.

2.1  Compressed complex spectrum
Usually, complex spectrum is used as the input for com-
plex spectrum masking or mapping. However, paper 
[40, 41] found that compressing the complex spectrum 
resulted in better speech quality and intelligibility. The 
specific procedure for compressing the complex spec-
trum is as follows, where y(t), s(t), and n(t) respectively 
denote noisy speech, clean speech, and noise in the time 
domain.

Assuming that noise is additive, noisy speech can be 
obtained according to the following equation:

The complex spectrum can be obtained by applying the 
STFT on Eq. (1).

(1)y(t) = s(t)+ n(t)

(2)Y (k , l) = S(k , l)+ N (k , l)

where k and l indicate the frequency and frame index of 
the STFT. The complex spectrum Y(k, l) can be rewritten 
as:

where |Y(k,  l)| and θY  represent the magnitude spec-
trum and phase spectrum, respectively. The MCS can be 
obtained by performing exponential operations on the 
magnitude spectrum |Y (k , l)|c = |Y (k , l)|0.3 . The MCS is 
used to calculate the CCS via Eq. (4).

where Y c(k , l) and δ denote the CCS and a very small 
constant, respectively. The real and imaginary parts 
of the CCS and the MCS are used as channels into 2-D 
convolution.

2.2  U2‑LSTM
Inspired by U 2-Net [42], a similar topology named U 2-
LSTM is proposed as shown in Fig. 2a to capture the tem-
poral dependence, in which GConv2D and GDeConv2D 
represent gated 2-D convolution and gated 2-D decon-
volution, respectively. The specific structure of the UNet 
component is shown in Fig.  2b, where n denotes the 
number of each 2-D convolution or 2-D deconvolution. 
Instance normalization and a parametric rectified linear 
unit (PReLU) are added after Conv2D and DeConv2D. 
The dashed lines between GConv2D/Conv2D and GDe-
Conv2D/DeConv2D in Fig. 2 indicate connections in the 
channel dimension. The first GConv2D and the last GDe-
Conv2D have a convolution kernel size of 2× 5 , and the 
rest are 2× 3 . The convolution kernel size for Conv2D 
and Deconv2D is 1× 3 . The number of output channels 
for all layers is 64. Following the last GConv2D, RNN 

(3)Y (k , l) = |Y (k , l)|exp(iθY (k , l))

(4)Y c(k , l) = |Y (k , l)|c
Y (k , l)

max(|Y (k , l)|, δ)

Fig. 2 Proposed encoder-decoder network U 2-LSTM. Dashed lines indicate connected features in the channel dimension
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components are used to process the temporal aspects of 
the audio data. A 4-layer LSTM with a hidden size of 256 
is added in the middle of U 2-Net.

2.3  Supervised attention U 2‑LSTM
DNNs can be seen as a black box, and the feature infor-
mation it extracts is often difficult to interpret. We pro-
pose a supervised attention structure to ensure that the 
feature extraction process aligns more closely with our 
expectations. This structure is modified from Zamir 
et al. [43], as shown in Fig. 3. U 2-LSTM performs feature 
extraction on the CCS and MCS to obtain input features 
Fin ∈ R

64×L×K  , where L denotes the number of frames, 
K denotes the number of frequency bins, and 64 is the 
number of channels. A 2-D convolution is performed to 
generate the compensation value Fc ∈ R

3×L×K  . The com-
pensation value Fc is summed with the CCS and MCS to 
obtain the rough enhancement spectrum Fr ∈ R

3×L×K  , 
which is fed into the loss function for supervision. The 
attention masking AM ∈ R

64×L×K  is generated by per-
forming a 2-D convolution and sigmoid on Fr . The result 
is then used to recalibrate Fin to obtain attention-guided 
features. The calibrated features Fout ∈ R

64×L×K  are sup-
plied to the next stage for processing. Here, the three 2-D 
convolutional kernels are all of size 1× 1.

2.4  Gated TCM
To compensate for the insufficient dimensionality of the 
input features of the first MSTCM, GTCMs are added 
to extract the MCS, as shown in Fig.  4. GTCMs con-
sist of multiple gated TCNs with varying dilation rates. 
GTCMs are lightweight and easy to implement. In Fig. 4, 
k denotes the convolution kernel size, d denotes the 
dilation rate, I denotes the number of input channels, 
and O denotes the number of output channels. Three 
GTCMs are used, each of which stacks six gated TCNs 

with different dilation rates growing exponentially from 
20 to 25 . For each GTCM, instance normalization and 
PReLU are applied before the second and subsequent 1-D 
convolutions.

2.5  Multi‑scale TCN
Since our previous studies [21] have shown that a multi-
scale approach to refine the receptive fields will help 
improve speech reconstruction, we propose a simple and 
effective multi-scale subband analysis method as shown 
in Fig. 5.

Each MSTCM stacks five causal MSTCNs with a 
convolutional kernel size of k = 3 and dilation rates 
d = 1, 3, 5, 7, 11 , respectively. To compress the feature 
dimension of SAU2-LSTM output Fout ∈ R

64×L×K  , 
Conv2D &1D is used. For 2-D convolution, there are 64 
input channels and 6 output channels, and the kernel size 
is 1× 1 , so the output feature is FConv2D ∈ R

6×L×K  . We 
reshape FConv2D ∈ R

6×L×K  as FConv2DRe ∈ R
6K×L . The 

reshaped features FConv2DRe are supplied as input to a 1-D 
convolution with 256 output channels and a kernel size 
of 1 to generate the output feature FConv1D ∈ R

256×L . All 
MSTCNs after the first will receive the output features 
from the previous MSTCN as input, and these features 
will be compressed into FPre ∈ R

256×L by a 1-D convo-
lution with a kernel size of 1. FConv1D concatenates with 
FPre to create a new feature Fcat ∈ R

512×L . The concat-
enated features Fcat will be divided into eight subbands 
of equal length Fsub,i=0,1,...,7 resulting from multi-scale 
analysis. As shown in Fig. 5, an MSTCN contains left and 
right branches, each of which has eight dilated 1-D con-
volutions [44] with I input channels and O output chan-
nels. Each MSTCN receives the output of the previous 
dilated 1-D convolution, and the current subband fea-
tures Fsub,i as input. Batch normalization [45], a rectified 
linear unit (ReLU) activation function, and dropout [46] 

Fig. 3 Principles of supervised attention in the U 2-LSTM
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are used after each dilated 1-D convolution to enhance 
model capability and avoid overfitting. Before 1-D convo-
lution, the output features of the left and right branches 
are added to produce the output of the MSTCN.

2.6  Loss function
The loss function of many models [27, 32] directly cal-
culates the mean square error between the enhanced 
complex spectrum and the clean complex spectrum. In 
the masking stage, to supervise the feature extraction, 

we train the model using a supervised attention complex 
compressed loss function :

where Ŝcr denotes the rough estimate of the enhanced 
CCS via SAU2-LSTM, and Ŝc1 denotes the enhanced CCS 
after the masking stage. α and β are coefficients, which in 
this study are respectively assigned values of 0.3 and 0.8. 
In the compensation stage, because supervised attention 
is no longer required, we use the following loss function:

where Ŝc2 denotes the final enhanced CCS after the mask-
ing and compensation stages. In the loss function, .c rep-
resents the compressed spectrum, and its calculation 
method can refer to Eq. 4.

2.7  Post‑processing for signal reconstruction
Inspired by Hu et  al. [26], instead of multiplying the 
CRM and CCS directly, we use the following method to 
enhance the complex spectrum. The estimated CRM can 
be expressed as:

Ŝ1(k , l) represents the enhanced complex spectrum after 
the masking stage, which can be calculated according to 
the following equation:

We use the tanh activation function to limit the mag-
nitude mask to the range 0 to 1 and then compensate for 
the noisy phase with the masking phase.

The enhanced complex spectrum after the compen-
sation stage can be expressed as follows, where Ĉ(k , l) 
denotes the compensation value of the compensation 
stage:

This compensation further improves the quality and 
intelligibility of the enhanced speech.

3  Experimental setup
3.1  Dataset construction
To ensure that the training data is sufficiently rich, we use 
the dataset [31] of the 3rd DNS challenge for training and 
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(7)M̂c(k , l) = |M̂(k , l)|cexp(iθ̂ cM(k , l))

(8)Ŝ1(k , l) = tanh(|M̂(k , l)|c)|Y (k , l)|exp(i(θ̂ cM(k , l)+ θY (k , l)))

(9)Ŝ2(k , l) = Ŝ1(k , l)+ Ĉ(k , l)

Fig. 4 Gated temporal convolution module
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testing. For the dataset construction, we select English 
and Chinese, two of the most widely spoken languages 
globally. Because the audio quality of the original DNS 
dataset is uneven, we clean the DNS dataset. Audio with 
a lower prior SNR often contains noise. We use a trained 
Deep-Xi model to estimate the average prior SNR for 
each audio segment. To enhance the quality of the clean 
speech dataset, we remove the bottom 20% of audio files 
with the lowest average prior SNR. The cleaned data-
set is divided into three parts: 80% for training, 10% for 
validation, and 10% for testing. The final training set 
contains 337 h of English audio, 146 h of Chinese audio, 
and 147 h of noise audio. The validation set and test set 
each include 42 h of English audio, 18 h of Chinese audio, 
and 18 h of noise audio. To simulate a wide range of sce-
narios from extreme noise conditions to relatively quiet 
environments, we mix speech and noise at random SNRs 
ranging from -5 dB to 20 dB. In addition, to account for 
reverberation effects in the real environment, a portion 
of the clean speech is blended with both synthetic and 
realistic room impulse responses (RIRs) provided by the 
3rd DNS dataset before being mixed with noise signals. 
The reverberation time T60 is between 0.3 and 1.3 s.

Given the focus of this study on training duration, 
reverberation, and the impact of different languages on 
speech enhancement models, we construct multiple 
datasets in Section  4. In Section  4.1, to investigate the 
influence of different languages on model robustness, we 
construct two training datasets, one containing English 

data and the other containing both Chinese and English 
data. Both training datasets are 500 h long and include 
no reverberation. In Section 4.2, we explore the impact of 
training dataset size on model performance by construct-
ing four datasets of varying durations (100, 500, 1000, 
and 1500 h) with Chinese and English audio. Training 
datasets with and without reverberation are constructed 
to compare the effect of reverberation on model robust-
ness in Section  4.3. The two training datasets contain 
English and Chinese data with a total duration of 500 h.

3.2  Training details
All clean speech and noise audio are sampled at 16 kHz. 
In SA-MSTCN, the frame length is 20  ms with 50% 
frameshift, and the Hamming window is used before 
applying the STFT.

All parameters in the model are randomly initialized, 
and the Adam algorithm [47] is used as the optimizer. 
The initial learning rate is 0.001, and the learning rate 
is halved when the loss stops decreasing for three train-
ing epochs. When the learning rate of the masking stage 
decreases to 0.0001, the parameters of the masking stage 
are frozen, and the compensation stage is updated. When 
the compensation stage learning rate decays to 0.0001, 
the network parameters stop updating.

3.3  Baseline models
We selecte eight state-of-the-art models for comparison 
from current speech enhancement methods, including 

Fig. 5 Proposed multi-scale temporal convolution module
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magnitude spectral masking, complex spectral mask-
ing, and time domain mapping. For magnitude spectral 
masking, we chose CRN, MSTCN, and LSTM-IRM. 
LSTM-IRM is the baseline model we build, containing 
two LSTM layers with a hidden dimension of 1024 and 
one fully connected layer. GCRN, GaGNet, DPCRN, and 
DCCRN are chosen for comparison for complex spectral 
masking speech enhancement. Conv-TasNet, which per-
formed speech enhancement in the time domain, is also 
chosen as a comparison model. All baseline models are 
implemented officially.

3.4  Evaluation metrics
To verify the validity of the model structure and to com-
pare the performance of the models, we evaluate the 
models using the following metrics:

PESQ (perceptual evaluation of speech quality) [48]: 
This is the most commonly used objective metric for 
evaluating speech quality and uses clean speech as 
the standard for evaluating enhanced speech. PESQ 
scores range from − 0.5 to 4.5, with higher scores 
indicating better voice quality.
STOI (short-time objective intelligibility) [49]: This is 
a widely used objective metric for evaluating speech 
intelligibility and has a strong correlation with the 
intelligibility of speech. STOI scores range from 0 to 
1, with higher scores indicating higher intelligibility 
of speech.
SDR (signal to distortion ratio) [50]: This metric eval-
uates the distortion of the speech signal in the time 
domain. It measures the ratio of the energy of clean 
speech to the energy of distortion, with higher scores 
indicating smaller amounts of distortion.
OUTE (optimal unit training epoch): This is a new 
metric we defined to compare the relative time taken 
to train a model to the optimum with training data-
sets of varying sizes. We define the time to train a 
model in the 100-h training dataset for one epoch as 
the unit training epoch. Similarly, the time to train a 
model in the 500-h training dataset for one epoch is 
recorded as five training epochs. With this metric, we 
can compare the relative time to train each model for 
different training dataset sizes.

4  Building a training dataset for real scenarios
In general, the components of the training dataset have 
a substantial impact on the application of the model. 
Many experiments are conducted in this section to make 
the model robust. The following subsections discuss the 
effects of language, duration, and reverberation on the 
training datasets.

4.1  Language of the training dataset
As we all know, every place has its own language, and 
each language features unique characteristics. To prevent 
speech enhancement models from failing with unseen 
languages, this subsection discusses the impact of the 
language used in the training dataset on the model’s 
robustness. We construct two different training data-
sets for comparison: one exclusively containing English 
and the other containing both Chinese and English. The 
models are tested using datasets in English, Chinese, 
and a mix of English and Chinese, as well as with unseen 
French, Spanish, and Japanese. The findings are compre-
hensively presented in Tables  1 and 2. In these tables, 
“Mix” denotes a dataset that incorporates both English 
and Chinese. The term “English→Mix” indicates the vari-
ation in evaluation metrics as the training dataset shifts 
from English to a mixed language format. A positive 
difference indicates that the mixed dataset yields better 
results, while a negative value indicates that the English 
dataset performs better. SA-MSTCN1 and SA-MSTCN2 
denote the enhanced speech after the masking and com-
pensation stages, respectively.

The experimental results show that models trained on 
the English and Mix training datasets exhibit compara-
ble performance on the English test datasets. However, 
a noticeable performance gap becomes evident when 
these models are tested using the Chinese dataset. This is 
attributed to the fact that the model trained solely on the 
English dataset has not been exposed to Chinese, result-
ing in a significant performance decline when processing 
Chinese speech. On the other hand, the model trained on 
the Mix dataset, having been exposed to Chinese, main-
tains robust performance on the Chinese test dataset.

To further explore the impact of language diversity in 
the training dataset, we test the models on French, Span-
ish, and Japanese languages, none of which had been 
previously encountered by the models. Interestingly, 
likely due to the similar characteristics between French 
and English, the performance of the models trained on 
both the English and Mix datasets is nearly identical to 
the French test dataset. However, when tested with the 
Spanish and Japanese datasets, the model trained on the 
Mix dataset performs better than the one trained solely 
on English.

In conclusion, broadening the linguistic diversity of the 
training dataset seems to enhance the robustness and 
generalizability of the model to a certain degree. In sub-
sequent experiments, the training and testing datasets 
include Chinese and English.



Page 9 of 16Zhang et al. EURASIP Journal on Audio, Speech, and Music Processing         (2024) 2024:20  

4.2  Duration of the training dataset
Most DNNs-based speech enhancement methods are 
data-driven, and the richness of the dataset greatly 
impacts model performance. To explore the number of 
training hours needed to saturate model performance, we 
train baseline models using datasets containing 100, 500, 
1000, and 1500 h of audio data, with the results shown in 
Table 3.

As expected, smaller training datasets, such as the 
100-h dataset, struggle to bring out the model’s full 
potential. Both CRN and the compensation stage of SA-
MSTCN prove almost ineffective with small datasets, 

indicating that such datasets are not suitable for abla-
tion studies. The performance of the models mark-
edly improves when the training dataset reaches 500 
h. However, the increment in performance is smaller 
when expanding the dataset from 500 to 1000 h. When 
the training dataset is extended to 1500 h, some mod-
els continue to show performance improvements, while 
others have already reached saturation or even show 
degradation.

The evaluation metric OUTE shows that most models 
have similar training durations with 500-h and 1000-h 
datasets. However, with a 1500-h dataset, the models 

Table 1 Comparison of average PESQ, STOI, and SDR in different languages

Training dataset English Mix English→Mix

Test dataset Metrics PESQ STOI (%) SDR PESQ STOI (%) SDR �PESQ �STOI (%) �SDR

English Unprocessed 1.96 92.6 13.63 1.96 92.6 13.63 - - -

CRN 2.41 94.8 18.49 2.45 95.0 18.56 0.04 0.2 0.07

MSTCN 2.68 94.8 16.40 2.66 95.1 16.32  − 0.02 0.3  − 0.08

LSTM-IRM 2.80 95.9 18.84 2.80 96.0 18.92 0.00 0.1 0.08

GCRN 2.76 95.5 19.98 2.76 95.5 19.98 0.00 0.0 0.00

GaGNet 2.89 96.1 20.43 2.92 96.1 20.35 0.03 0.0  − 0.08

Conv-TasNet 3.07 96.6 21.67 2.93 96.2 20.94  − 0.14  − 0.4  − 0.73

DCCRN 3.17 96.6 21.20 3.14 96.5 20.57  − 0.03  − 0.1  − 0.63

DPCRN 3.16 96.6 20.75 3.11 96.4 20.59  − 0.05  − 0.2  − 0.16

SA-MSTCN1 3.26 96.6 20.11 3.30 96.8 20.57 0.04 0.2 0.46

SA-MSTCN2 3.29 96.7 20.46 3.35 97.0 21.13 0.06 0.3 0.67

Chinese Unprocessed 2.31 88.2 16.81 2.31 88.2 16.81 - - -

CRN 2.44 86.8 16.77 2.76 89.4 20.30 0.32 2.6 3.53

MSTCN 2.26 86.9 14.94 2.99 91.5 17.45 0.73 4.6 2.51

LSTM-IRM 2.80 90.4 18.37 3.15 92.6 20.97 0.35 2.2 2.60

GCRN 3.09 90.2 21.46 3.09 90.2 21.45 0.00 0.0  − 0.01

GaGNet 2.77 89.1 18.02 3.16 91.2 21.38 0.41 2.1 3.36

Conv-TasNet 2.95 90.5 20.12 3.16 91.1 21.39 0.21 0.6 1.27

DCCRN 2.66 89.4 17.98 3.43 92.7 21.70 0.77 3.3 3.72

DPCRN 3.01 90.7 18.99 3.40 92.5 22.49 0.39 1.8 3.50

SA-MSTCN1 3.21 92.2 20.74 3.58 93.6 21.92 0.37 1.4 1.18

SA-MSTCN2 3.26 92.3 21.00 3.60 93.8 22.21 0.34 1.5 1.21

Mix Unprocessed 2.08 91.7 14.81 2.08 91.7 14.81 - - -

CRN 2.55 93.8 19.29 2.55 93.8 19.29 0.00 0.0 0.00

MSTCN 2.63 93.5 16.40 2.77 94.3 16.82 0.14 0.8 0.42

LSTM-IRM 2.82 94.6 19.26 2.90 95.2 19.90 0.08 0.6 0.64

GCRN 2.86 94.4 20.81 2.85 94.4 20.83  − 0.01 0.0 0.02

GaGNet 2.83 94.0 19.84 2.98 94.9 21.04 0.15 0.9 1.20

Conv-TasNet 2.96 94.6 20.55 2.99 95.0 21.50 0.03 0.4 0.95

DCCRN 3.08 95.0 20.65 3.22 95.7 21.48 0.14 0.7 0.83

DPCRN 3.14 95.2 20.98 3.19 95.6 21.53 0.05 0.4 0.55

SA-MSTCN1 3.24 95.7 20.98 3.38 96.1 21.45 0.14 0.4 0.47

SA-MSTCN2 3.26 95.8 21.30 3.41 96.2 21.95 0.15 0.4 0.65
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require longer to converge. Consequently, a training data-
set of 500 to 1000 h emerges as a stable and cost-effective 
choice for constructing speech enhancement models. 
As models trained with the 500-h dataset sacrifice only 
minimal performance and require less time to train, it is 
a preferable option for comparison experiments. There-
fore, in this study, the 500-h training dataset is used for 
all experiments comparing baseline models.

4.3  Reverberation of the training dataset
In real environments, such as conference rooms, 
speech reverberation is a common and unavoidable 

phenomenon. Room impulse response (RIR) severely dis-
rupts the resonant peak structure of speech, which can 
render speech enhancement algorithms ineffective. To 
explore the impact of reverberation on speech enhance-
ment model performance, we train the baseline model 
using training datasets with reverberation, without rever-
beration, and with half of the data containing reverbera-
tion. We evaluate the model using noisy-reverberant 
speech and noisy-anechoic speech, with test results as 
shown in Table 4.

When models trained with anechoic speech are tested 
on anechoic speech, there is a significant improvement 

Table 2 Comparison of average PESQ, STOI, and SDR in different languages

Training dataset English Mix English→Mix

Test dataset Metrics PESQ STOI (%) SDR PESQ STOI (%) SDR �PESQ �STOI (%) �SDR

French Unprocessed 2.19 92.4 15.53 2.19 92.4 15.53 - - -

CRN 2.54 93.1 19.28 2.63 93.8 19.77 0.09 0.7 0.49

MSTCN 2.91 94.2 17.51 2.89 94.3 17.54  − 0.02 0.1 0.03

LSTM-IRM 2.97 94.9 20.26 2.98 94.9 20.35 0.01 0.0 0.09

GCRN 2.93 94.2 20.98 2.93 94.2 20.98 0.00 0.0 0.00

GaGNet 3.03 94.8 21.50 3.08 94.9 21.66 0.05 0.1 0.16

Conv-TasNet 3.14 95.2 22.34 3.06 94.7 21.95  − 0.08  − 0.5  − 0.39

DCCRN 3.26 95.6 22.42 3.28 95.8 22.56 0.02 0.2 0.14

DPCRN 3.24 95.6 21.84 3.25 95.7 22.22 0.01 0.1 0.36

SA-MSTCN1 3.35 95.5 21.34 3.38 95.8 21.93 0.03 0.3 0.59

SA-MSTCN2 3.36 95.7 21.56 3.40 96.0 22.28 0.04 0.3 0.72

Spanish Unprocessed 2.24 93.6 15.48 2.24 93.6 15.48 - - -

CRN 2.59 94.2 18.39 2.67 95.1 19.21 0.08 0.9 0.82

MSTCN 2.84 94.2 16.35 2.85 95.2 16.69 0.01 1.0 0.34

LSTM-IRM 2.91 95.5 19.17 2.95 95.7 19.68 0.04 0.2 0.51

GCRN 2.87 95.5 20.37 2.87 95.5 20.37 0.00 0.0 0.00

GaGNet 2.91 95.7 20.16 3.01 96.0 20.57 0.10 0.3 0.41

Conv-TasNet 3.05 96.0 20.85 2.99 93.6 20.74  − 0.06  − 2.4  − 0.11

DCCRN 3.18 96.4 21.07 3.23 96.6 21.55 0.05 0.2 0.48

DPCRN 3.20 96.4 21.09 3.21 96.6 21.49 0.01 0.2 0.40

SA-MSTCN1 3.28 96.5 21.03 3.31 96.6 21.22 0.03 0.1 0.19

SA-MSTCN2 3.30 96.6 21.59 3.33 96.7 21.69 0.03 0.1 0.10

Japanese Unprocessed 1.96 92.3 13.75 1.96 92.3 13.75 - - -

CRN 2.33 92.8 17.77 2.34 93.1 17.86 0.01 0.3 0.09

MSTCN 2.42 93.0 15.60 2.49 93.2 15.75 0.07 0.2 0.15

LSTM-IRM 2.63 94.1 18.28 2.65 94.3 18.37 0.02 0.2 0.09

GCRN 2.52 93.5 18.88 2.57 93.5 18.89 0.05 0.0 0.01

GaGNet 2.59 93.7 17.87 2.67 93.8 19.00 0.08 0.1 1.13

Conv-TasNet 2.71 94.1 19.68 2.66 93.7 19.23  − 0.05  − 0.4  − 0.45

DCCRN 2.83 94.2 19.70 2.88 94.4 19.93 0.05 0.2 0.23

DPCRN 2.90 94.8 19.67 2.91 94.7 19.85 0.01 0.1 0.18

SA-MSTCN1 2.95 94.8 18.98 2.97 94.9 19.13 0.02 0.1 0.15

SA-MSTCN2 2.97 94.9 19.12 3.00 95.0 19.56 0.03 0.1 0.44
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in objective metric scores across all models. However, 
when the test set’s noisy speech is mixed with rever-
beration, the effectiveness of all models significantly 
decreases. Most models struggle in this scenario, show-
ing limited noise suppression capability. As indicated in 
Table 4, models trained with datasets mixed with rever-
beration successfully suppress noise in noisy-reverber-
ant speech. Interestingly, such training ensures that the 
models also performed well on noisy-anechoic speech. 
Although models trained with reverberant speech don’t 
process noisy-anechoic speech as effectively as those 
trained with anechoic speech, the performance degra-
dation was within acceptable limits. When the training 
dataset included half of the data with reverberation, the 
performance of most models is intermediate compared 
to those trained exclusively on datasets with or without 
reverberation. This offers a valuable balance, suggesting 
that training with half of the data containing reverbera-
tion can significantly improve the model’s robustness.

5  Experiments and analysis
After determining a better strategy for building a training 
dataset, this section discusses the design of SA-MSTCN. 
The proposed SA-MSTCN is subjected to ablation stud-
ies of different component configurations and the perfor-
mance is compared with many current state-of-the-art 
models.

5.1  Performance comparison for different component 
configurations

We perform the ablation study to verify the validity of 
each part of SA-MSTCN. We use MSTCM as the basis 
for gradually adding other modules. The training and test 
datasets are the same as those in Section  4.3, and both 
contain reverberation. The results of this ablation study 

are shown in Table 5. MSTCMs using MACs at a rate of 
only 1.02  G/s outperform GCRN and GaGNet and are 
comparable to Conv-TasNet, establishing it as a highly 
competitive module. The addition of the U 2-LSTM mod-
ule compensates for the inability of MSTCMs to capture 
temporal dependency. With the addition of U 2-LSTM, 
the PESQ increases by 0.33, and STOI increases by 1.6%. 
The supervised attention mechanism is a very cost-effec-
tive module, which significantly improves speech quality 
and intelligibility in exchange for only 0.01 M increase 
in model parameters and a 0.08  G/s increase in MACs. 
Incorporating GTCMs slightly increases the parameters 
and MACs but continues to improve all three perfor-
mance metrics. The most resource-intensive configura-
tion with the highest parameters and MACs also shows 
the best performance metrics. Table  5 also presents an 
alternative configuration path, starting with MSTCMs, 
then adding GTCMs, followed by U 2-LSTM, supervised 
attention, and compensation in sequence. Each addition 
seems to follow a similar trend of increasing computa-
tional cost for improved performance metrics.

5.2  Performance comparison for different loss functions
The choice of loss function in training speech enhance-
ment models is a critical decision that affects various 
aspects of model performance. In this subsection, we dis-
cuss the impact of the proposed loss function on model 
performance, with the results presented in Table 6. Here, 
MSE indicates the substitution of uncompressed spec-
trum for the compressed spectrum in L1 and L2 . The 
versions of SA-MSTCN1 ( L1 ) and SA-MSTCN2 ( L2 ) 
outperform their MSE counterparts, indicating that the 
choice of loss function has a notable impact on the mod-
el’s performance.

Table 3 Comparison of average PESQ, STOI, and SDR for test datasets of different durations

Metrics PESQ STOI (%) SDR OUTE

Duration 100 500 1000 1500 100 500 1000 1500 100 500 1000 1500 100 500 1000 1500

Unprocessed 2.08 2.08 2.08 2.08 91.7 91.7 91.7 91.7 14.81 14.81 14.81 14.81 - - - -

CRN 2.13 2.55 2.59 2.64 91.3 93.8 94.0 94.1 17.69 19.29 19.38 19.58 75 335 340 330

MSTCN 2.67 2.77 2.78 2.80 93.7 94.3 94.5 94.4 15.873 16.82 17.16 17.07 59 230 540 690

LSTM-IRM 2.57 2.90 2.93 3.01 93.8 95.2 95.2 95.5 18.42 19.90 20.03 20.22 34 120 150 285

GCRN 2.55 2.85 2.91 2.96 92.9 94.4 94.6 94.9 18.84 20.83 20.99 21.40 93 355 400 525

GaGNet 2.67 2.98 2.98 3.02 93.4 94.9 95.0 95.1 19.51 21.04 21.14 21.44 50 230 260 300

Conv-TasNet 2.62 2.99 3.12 3.09 93.4 95.0 95.6 95.4 19.58 21.50 22.15 22.02 78 200 260 315

DCCRN 3.06 3.22 3.28 3.25 95.1 95.7 95.8 95.8 20.73 21.48 21.75 21.56 66 145 210 300

DPCRN 3.15 3.19 3.27 3.24 95.4 95.6 95.9 95.7 21.23 21.53 21.84 21.74 45 130 210 345

SA-MSTCN1 3.16 3.38 3.44 3.44 95.4 96.1 96.3 96.3 20.53 21.45 21.70 21.74 58 190 340 420

SA-MSTCN2 3.16 3.41 3.50 3.48 95.4 96.2 96.6 96.4 20.53 21.95 22.31 22.15 87 355 640 720
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Table 4 Comparison of the average PESQ, STOI, and SDR for test datasets with and without reverberation

Test dataset No RIR RIR

Training dataset Metrics PESQ STOI (%) SDR PESQ STOI (%) SDR

No RIR Unprocessed 2.08 91.7 14.81 2.24 88.5 14.81

CRN 2.55 93.8 19.29 2.18 88.7 15.76

MSTCN 2.77 94.3 16.82 2.52 90.1 14.36

LSTM-IRM 2.90 95.2 19.90 2.71 91.6 16.81

GCRN 2.85 94.4 20.82 2.37 89.1 16.13

GaGNet 2.98 94.9 21.04 2.47 89.5 16.55

Conv-TasNet 2.99 95.0 21.50 2.44 89.3 16.31

DCCRN 3.22 95.7 21.48 2.49 90.4 16.43

DPCRN 3.19 95.6 21.53 2.71 91.6 17.53

SA-MSTCN1 3.38 96.1 21.45 2.74 91.4 17.21

SA-MSTCN2 3.41 96.2 21.95 2.71 91.3 17.24

RIR CRN 2.43 93.3 18.75 2.59 90.7 18.39

MSTCN 2.59 93.6 16.19 2.75 91.6 15.93

LSTM-IRM 2.83 95.0 19.70 3.02 93.2 19.31

GCRN 2.68 93.6 19.75 2.84 91.8 19.08

GaGNet 2.69 93.8 19.87 2.86 91.6 19.49

Conv-TasNet 2.93 94.8 21.08 3.03 92.5 20.22

DCCRN 3.00 94.9 21.16 3.15 93.0 20.30

DPCRN 2.98 94.9 20.58 3.24 93.3 20.14

SA-MSTCN1 3.24 95.7 20.99 3.44 94.3 20.61

SA-MSTCN2 3.26 95.8 21.30 3.47 94.3 20.83

Half RIR and half no RIR CRN 2.50 93.5 19.02 2.58 90.7 18.40

MSTCN 2.69 94.0 16.54 2.75 91.6 15.87

LSTM-IRM 2.92 95.2 19.90 3.01 93.1 19.33

GCRN 2.72 94.0 20.09 2.84 91.4 19.14

GaGNet 2.91 94.0 20.87 2.84 91.3 19.22

Conv-TasNet 2.94 94.8 21.23 3.02 92.4 20.18

DCCRN 3.16 95.2 21.35 3.15 92.9 20.11

DPCRN 3.09 95.2 20.93 3.20 93.1 20.03

SA-MSTCN1 3.32 95.9 21.26 3.42 94.3 20.55

SA-MSTCN2 3.36 96.0 21.41 3.46 94.3 20.79

Table 5 Experimental results of combining different modules with MSTCM

#Param. (M) MACs (G/s) PESQ STOI (%) SDR

Unprocessed - - 2.24 88.5 14.81

MSTCMs 10.13 1.02 2.99 92.3 19.08

 +U2-LSTM 23.54 8.26 3.32 93.9 20.16

  +Supervised Attention 23.55 8.34 3.39 94.1 20.45

   +GTCMs 24.66 8.45 3.44 94.3 20.61

    +Compensation 28.12 12.07 3.47 94.3 20.83

MSTCMs 10.13 1.02 2.99 92.3 19.08

 +GTCMs 11.24 1.13 3.16 92.9 19.75

  +U2-LSTM 24.65 8.37 3.37 94.1 20.43

   +Supervised Attention 24.66 8.45 3.44 94.3 20.61

    +Compensation 28.12 12.07 3.47 94.3 20.83
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5.3  Performance comparison with baseline models
In this subsection, we compare the proposed SA-MSTCN 
with eight baseline models. All models are trained on a 
500-h training dataset with reverberation. To compare 

model performance and robustness, two test datasets are 
constructed, with and without reverberation. The SNR 
of the two test datasets ranged from − 5 dB to 20 dB in 
increments of 5 dB, with 1 h of noisy speech at each level. 
Some test demos are available at the link1.

As shown in Table  7, compared with the baseline 
models, the proposed SA-MSTCN shows a significant 
improvement in PESQ scores, especially in low-SNR con-
ditions. While most models show the greatest improve-

ment in PESQ scores for noisy speech between 0 and 10 
dB, the proposed SA-MSTCN demonstrates a substantial 
PESQ enhancement across this SNR range. �Avg. rep-
resents the average difference between enhanced speech 
and unprocessed speech. �Avg. with RIR is almost iden-
tical to �Avg. without RIR, indicating that the training 
dataset with reverberation allows the model to process 

Table 6 Experimental results of different loss function

PESQ STOI (%) SDR

Unprocessed 2.24 88.5 14.81

SA-MSTCN1 (MSE) 3.35 93.8 20.02

SA-MSTCN1 ( L1) 3.44 94.3 20.61

SA-MSTCN2 (MSE) 3.39 93.9 20.24

SA-MSTCN2 ( L2) 3.47 94.3 20.83

Table 7 Average PESQ scores of compared methods for noisy and enhanced speech under various SNR conditions

No RIR RIR

SNR  − 5 dB 0 dB 5 dB 10 dB 15 dB 20 dB �Avg. − 5 dB 0 dB 5 dB 10 dB 15 dB 20 dB �Avg.

Unprocessed 1.36 1.57 1.82 2.23 2.73 3.22 - 1.42 1.68 1.97 2.44 2.98 3.47 -

CRN 1.74 2.06 2.32 2.65 2.95 3.23 0.33 1.84 2.20 2.49 2.85 3.17 3.45 0.34

MSTCN 1.77 2.14 2.46 2.87 3.27 3.60 0.53 1.86 2.26 2.62 3.07 3.49 3.83 0.53

LSTM-IRM 1.99 2.38 2.71 3.11 3.46 3.75 0.74 2.12 2.56 2.90 3.34 3.71 4.00 0.78

GCRN 1.98 2.34 2.62 2.93 3.20 3.42 0.59 2.04 2.44 2.76 3.13 3.42 3.65 0.60

GaGNet 1.93 2.30 2.59 2.94 3.23 3.49 0.59 2.03 2.44 2.76 3.14 3.47 3.74 0.60

Conv-TasNet 2.13 2.52 2.81 3.15 3.46 3.70 0.80 2.17 2.58 2.92 3.32 3.65 3.91 0.76

DCCRN 2.16 2.59 2.92 3.29 3.59 3.85 0.91 2.24 2.70 3.07 3.48 3.81 4.06 0.90

DPCRN 2.17 2.58 2.89 3.24 3.54 3.79 0.88 2.37 2.83 3.18 3.56 3.87 4.10 0.99

SA-MSTCN1 2.40 2.84 3.15 3.49 3.77 3.98 1.11 2.63 3.10 3.40 3.75 4.01 4.21 1.19

SA-MSTCN2 2.43 2.87 3.18 3.51 3.78 3.99 1.13 2.63 3.10 3.43 3.77 4.03 4.22 1.20

Table 8 Average STOI (%) scores of compared methods for noisy and enhanced speech under various SNR conditions

No RIR RIR

SNR  − 5 dB 0 dB 5 dB 10 dB 15 dB 20 dB �Avg.  − 5 dB 0 dB 5 dB 10 dB 15 dB 20 dB �Avg.

Unprocessed 83.1 88.4 91.7 94.7 96.8 98.1 - 77.1 83.9 88.2 92.3 95.2 97.1 -

CRN 86.7 91.1 93.5 95.4 96.8 97.6 1.4 82.2 87.7 90.7 93.4 95.3 96.5 2.0

MSTCN 87.0 91.4 93.8 95.9 97.3 98.1 1.8 83.2 88.7 91.7 94.4 96.3 97.6 3.0

LSTM-IRM 89.5 93.2 95.2 96.9 98.0 98.7 3.2 86.0 90.7 93.3 95.6 97.1 98.2 4.5

GCRN 87.7 91.7 93.8 95.6 96.7 97.5 1.7 83.4 88.5 91.3 93.7 95.3 96.4 2.4

GaGNet 89.5 91.6 93.9 95.8 97.1 98.0 2.2 83.3 88.6 91.5 94.2 95.9 97.2 2.8

Conv-TasNet 89.7 93.2 95.0 96.6 97.6 98.4 2.9 85.4 90.1 92.6 95.0 96.6 97.7 3.9

DCCRN 89.3 93.1 95.1 96.8 97.9 98.6 3.0 85.5 90.4 93.0 95.4 96.9 98.0 4.2

DPCRN 89.2 92.9 94.9 96.6 97.7 98.5 2.9 86.1 90.8 93.3 95.6 97.1 98.2 4.5

SA-MSTCN1 90.6 94.0 95.8 97.2 98.2 98.8 3.7 87.9 92.1 94.3 96.2 97.6 98.4 5.4

SA-MSTCN2 90.7 942 95.9 97.3 98.3 98.8 3.8 87.9 92.1 94.4 96.3 97.6 98.5 5.5

1 https:// hitsz iot. github. io/ 2024/ 02/ 20/ SAMST CN/

https://hitsziot.github.io/2024/02/20/SAMSTCN/
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noisy speech with and without reverberation, attaining 
the same speech quality improvement for both.

From Table  8, it can be concluded that SA-MSTCN 
achieves a significantly better STOI score than the 
baseline models. When the SNR of noisy speech is 20 
dB, many models can no longer improve speech intel-
ligibility or even reduce it, but under these conditions, 
the STOI of the proposed SA-MSTCN improves by 
0.008. Unlike the PESQ scores, the difference between 
�Avg. with and without RIR indicates a more signifi-
cant improvement in intelligibility when the model 
processes speech with reverberation.

As shown in Table  9, DCCRN achieves the highest 
SDR score for noisy speech without reverberation, and 
SA-MSTCN reaches a more advantageous SDR score 

for noisy speech with reverberation. Similar to the 
PESQ scores, �Avg. is very similar with RIR and with-
out RIR for all models.

In addition, we plot the spectrograms of clean 
speech, noisy speech, and speech enhanced by GaG-
Net, Conv-TasNet, DCCRN, DPCRN, and SA-MSTCN, 
as shown in Fig. 6. The spectrograms show that Conv-
TasNet, DCCRN, and DPCRN suppress the high-fre-
quency part of the noisy speech signal significantly, but 
the proposed SA-MSTCN recovers better. Compared 
to the masking stage, the compensation stage enables 
the effective recovery of over-masked speech signals.

The number of parameters and MACs for each model 
are shown in Table  10. Because more 1-D convolutions 
are employed in the proposed SA-MSTCN, the number 
of parameters is greater than the other models. Com-
pared to DCCRN, the first stage of SA-MSTCN has 
significantly fewer MACs but achieves better results 

Table 9 Average SDR scores of compared methods for noisy and enhanced speech under various SNR conditions

No RIR RIR

SNR  − 5 dB 0 dB 5 dB 10 dB 15 dB 20 dB �Avg.  − 5 dB 0 dB 5 dB 10 dB 15 dB 20 dB �Avg.

Unprocessed 3.79 8.84 12.84 17.84 22.84 27.84 - 3.73 8.77 12.77 17.77 22.77 27.77 -

CRN 11.24 14.77 17.49 20.90 24.24 27.43 3.68 10.88 14.36 17.09 20.52 23.97 27.25 3.41

MSTCN 9.79 13.22 15.74 18.51 20.71 22.23 1.03 9.44 12.88 15.41 18.26 20.60 22.27 0.88

LSTM-IRM 11.69 15.33 18.20 21.83 25.47 29.18 4.61 11.47 15.03 17.90 21.58 25.45 29.45 4.55

GCRN 12.71 16.06 18.64 21.79 24.81 27.55 4.59 11.91 15.27 17.89 21.09 24.22 27.01 3.97

GaGNet 12.27 15.62 18.30 21.55 24.79 28.09 4.43 12.15 15.49 18.13 21.54 25.02 28.68 4.57

Conv-TasNet 13.91 17.10 19.55 22.61 25.73 28.99 5.65 13.09 16.33 18.89 22.18 25.65 29.32 5.31

DCCRN 13.65 17.22 20.04 23.44 26.87 30.45 6.28 12.74 16.22 18.96 22.43 25.93 29.68 5.39

DPCRN 13.33 16.78 19.45 22.76 26.01 29.11 5.57 12.92 16.32 19.02 22.40 25.80 29.25 5.35

SA-MSTCN1 13.34 16.68 19.33 22.64 26.01 29.51 5.58 13.45 16.74 19.24 22.69 26.32 30.08 5.82

SA-MSTCN2 13.66 17.05 19.63 22.91 26.26 29.62 5.85 13.45 16.74 19.47 22.87 26.46 30.15 5.92

Fig. 6 Spectrograms of noisy and clean speech, enhanced 
by GaGNet, Conv-TasNet, DCCRN, DPCRN, and SA-MSTCN

Table 10 Comparison of parameter counts and multiply-
accumulate operations. Here, ✓ indicates causal models

Causal #Param. (M) MACs (G/s)

CRN ✓ 17.58 2.54

MSTCN ✓ 4.78 0.48

LSTM-IRM ✓ 13.24 1.34

GCRN ✓ 9.77 2.47

GaGNet ✓ 5.94 1.63

Conv-TasNet ✓ 5.00 5.23

DCCRN ✓ 3.67 14.38

DPCRN ✓ 0.80 3.17

SA-MSTCN1 ✓ 24.66 8.45

SA-MSTCN2 ✓ 28.12 12.07
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for most objective evaluation metrics. The number of 
MACs of the two-stage SA-MSTCN are similar to those 
of DCCRN, and the speech quality and distortion are 
further improved than SA-MSTCN1 . Combining the 
number of parameters, MACs, and performance, SA-
MSTCN1 is more cost-effective, and SA-MSTCN2 has 
stronger performance.

6  Conclusion
Our findings highlight the critical role of the train-
ing dataset’s composition in enhancing the model’s 
robustness. To improve the performance of the model’s 
robustness, the training dataset should include rever-
beration, multiple languages, and a duration of more 
than 500 h. This study proposes a causal monaural 
speech enhancement method called supervised atten-
tion multi-scale temporal convolutional network (SA-
MSTCN), which learns the CRM from the complex 
compressed spectrum. The model takes full advantage 
of convolution and LSTM in local modeling and long-
term modeling. The proposed supervised attention 
mechanism achieves a performance improvement at a 
very small cost. SA-MSTCN is associated with signifi-
cant PESQ and STOI improvement in both high-SNR 
and low-SNR environments compared to other state-
of-the-art models. The robustness and generalizabil-
ity of SA-MSTCN, bolstered by our proposed dataset 
construction approach, ensure consistent performance 
across unseen languages and reverberations. Fur-
ther reducing the parameters and computational cost, 
exploring the application of SA-MSTCN in real life is 
the next step to be studied.

Acknowledgements
Thanks to Professor Mingjiang Wang for his support. Thanks to all editors and 
reviewers for their suggestions and efforts.

Authors’ contributions
Zhang, Z. conceptualized the study and implemented the codebase, and 
wrote the manuscript. Zhang, L. further improved the details of the model. 
Zhuang, X. and Qian, Y. revised the manuscript and integrated experimental 
data. Wang, M. supervised the work. All authors read and approved the final 
manuscript.

Funding
This work was supported in part by the National Natural Science Foundation 
of China under Grant No.62276076, the National Natural Science Foundation 
of China under Grant No.62176102, and the Natural Science Foundation of 
Guangdong Province under Grant No.2020B1515120004.

Availability of data and materials
The datasets are available in the Deep Noise Suppression Challenge [31] 
repository: https:// github. com/ micro soft/ DNS- Chall enge.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 13 November 2023   Accepted: 25 March 2024

References
 1. R. Martin, Spectral subtraction based on minimum statistics. Power 6(8), 

1182–1185 (1994)
 2. P. Scalart, J. Filho, in 1996 IEEE International Conference on Acoustics, Speech, 

and Signal Processing Conference Proceedings, vol. 2. Speech enhance-
ment based on a priori signal to noise estimation. IEEE Atlanta (1996), p. 
629–632

 3. Y. Ephraim, D. Malah, Speech enhancement using a minimum-mean 
square error short-time spectral amplitude estimator. IEEE Trans. Acoust. 
Speech Signal Process. 32(6), 1109–1121 (1984)

 4. Y. Ephraim, D. Malah, Speech enhancement using a minimum mean-
square error log-spectral amplitude estimator. IEEE Trans. Acoust. Speech 
Signal Process. 33(2), 443–445 (1985)

 5. J.H. Chang, N.S. Kim, S. Mitra, Voice activity detection based on multiple 
statistical models. IEEE Trans. Signal Process. 54(6), 1965–1976 (2006)

 6. R. Martin, Noise power spectral density estimation based on optimal 
smoothing and minimum statistics. IEEE Trans. Speech Audio Process. 
9(5), 504–512 (2001)

 7. I. Cohen, B. Berdugo, Noise estimation by minima controlled recursive 
averaging for robust speech enhancement. IEEE Signal Process. Lett. 9(1), 
12–15 (2002)

 8. I. Cohen, Noise spectrum estimation in adverse environments: improved 
minima controlled recursive averaging. IEEE Trans. Speech Audio Process. 
11(5), 466–475 (2003)

 9. S. Rangachari, P.C. Loizou, A noise-estimation algorithm for highly non-
stationary environments. Speech Commun. 48(2), 220–231 (2006)

 10. A. Nicolson, K.K. Paliwal, Deep learning for minimum mean-square error 
approaches to speech enhancement. Speech Commun. 111, 44–55 
(2019)

 11. Q. Zhang, A. Nicolson, M. Wang, K.K. Paliwal, C. Wang, Deepmmse: A deep 
learning approach to mmse-based noise power spectral density estima-
tion. IEEE/ACM Trans. Audio Speech Lang. Process. 28, 1404–1415 (2020)

 12. A. Nicolson, K.K. Paliwal, Masked multi-head self-attention for causal 
speech enhancement. Speech Commun. 125, 80–96 (2020)

 13. P. Hewage, A. Behera, M. Trovati, E. Pereira, M. Ghahremani, F. Palmieri, Y. 
Liu, Temporal convolutional neural (tcn) network for an effective weather 
forecasting using time-series data from the local weather station. Soft 
Comput. 24, 16453–16482 (2020)

 14. J. Lin, A.J.D.L. van Wijngaarden, K.C. Wang, M.C. Smith, Speech enhance-
ment using multi-stage self-attentive temporal convolutional networks. 
IEEE/ACM Trans. Audio Speech Lang. Process. 29, 3440–3450 (2021)

 15. Z. Wu, C. Shen, A. Van Den Hengel, Wider or deeper: Revisiting the resnet 
model for visual recognition. Pattern Recogn. 90, 119–133 (2019)

 16. M. Nikzad, A. Nicolson, Y. Gao, J. Zhou, K.K. Paliwal, F. Shang, in Proceedings 
of the AAAI Conference on Artificial Intelligence, vol. 34. Deep residual-
dense lattice network for speech enhancement. AAAI, New York (2020), p. 
8552–8559

 17. Z. Jin, D. Wang, in 2007 IEEE International Conference on Acoustics, Speech 
and Signal Processing. A supervised learning approach to monaural segre-
gation of reverberant speech. IEEE, Honolulu (2007), p. IV–921–IV–924

 18. G. Kim, Y. Lu, Y. Hu, P.C. Loizou, An algorithm that improves speech intel-
ligibility in noise for normal-hearing listeners. J. Acoust. Soc. Am. 126, 
1486–1494 (2009)

 19. S. Srinivasan, N. Roman, D. Wang, Binary and ratio time-frequency masks 
for robust speech recognition. Speech Commun. 48, 1486–1501 (2006)

 20. A. Narayanan, D. Wang, in 2013 IEEE International Conference on Acoustics, 
Speech and Signal Processing. Ideal ratio mask estimation using deep 
neural networks for robust speech recognition. IEEE, Vancouver (2013), p. 
7092–7096

 21. L. Zhang, M. Wang, in Interspeech 2020. Multi-Scale TCN: Exploring Better 
Temporal DNN Model for Causal Speech Enhancement. ISCA, Shanghai 
(2020), p. 2672–2676

 22. K. Paliwal, K. Wójcicki, B. Shannon, The importance of phase in speech 
enhancement. Speech Commun. 53, 465–494 (2011)

https://github.com/microsoft/DNS-Challenge


Page 16 of 16Zhang et al. EURASIP Journal on Audio, Speech, and Music Processing         (2024) 2024:20 

 23. E. Jokinen, M. Takanen, H. Pulakka, P. Alku, in Interspeech. Enhancement of 
speech intelligibility in near-end noise conditions with phase modifica-
tion. ISCA, Singapore, (2014)

 24. P. Mowlaee, J. Kulmer, Phase estimation in single-channel speech 
enhancement: Limits-potential. IEEE/ACM Trans. Audio Speech Lang. 
Process. 23(8), 1283–1294 (2015)

 25. D.S. Williamson, Y. Wang, D. Wang, Complex ratio masking for monaural 
speech separation. IEEE/ACM Trans. Audio Speech Lang. Process. 24(3), 
483–492 (2016)

 26. Y. Hu, Y. Liu, S. Lv, M. Xing, S. Zhang, Y. Fu, J. Wu, B. Zhang, L. Xie, in Inter-
speech 2020. DCCRN: Deep Complex Convolution Recurrent Network for 
Phase-Aware Speech Enhancement. ISCA, Shanghai (2020), p. 2472–2476

 27. X. Le, H. Chen, K. Chen, J. Lu, in Interspeech 2021. DPCRN: Dual-Path Con-
volution Recurrent Network for Single Channel Speech Enhancement. 
ISCA, Brno (2021), p. 2811–2815

 28. H. Erdogan, J.R. Hershey, S. Watanabe, J. Le Roux, in 2015 IEEE International 
Conference on Acoustics, Speech and Signal Processing (ICASSP). Phase-sen-
sitive and recognition-boosted speech separation using deep recurrent 
neural networks. IEEE, Brisbane (2015), p. 708–712

 29. H. Wu, K. Tan, B. Xu, A. Kumar, D. Wong, in Interspeech 2023. Rethinking 
complex-valued deep neural networks for monaural speech enhance-
ment. ISCA, Dublin (2023), pp. 3889–3893

 30. Y. Luo, Z. Chen, T. Yoshioka, in 2020 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP). Dual-path rnn: efficient long 
sequence modeling for time-domain single-channel speech separation. 
IEEE, Virtual Barcelona (2020), p. 46–50

 31. C.K. Reddy, H. Dubey, K. Koishida, A. Nair, V. Gopal, R. Cutler, S. Braun, H. 
Gamper, R. Aichner, S. Srinivasan, in Interspeech 2021. Interspeech 2021 
deep noise suppression challenge. ISCA, Brno (2021), p. 2796–2800

 32. A. Li, C. Zheng, L. Zhang, X. Li, Glance and gaze: A collaborative learning 
framework for single-channel speech enhancement. Appl. Acoust. 187, 
108499 (2022)

 33. L. Zhang, M. Wang, Q. Zhang, X. Wang, M. Liu, Phasedcn: A phase-
enhanced dual-path dilated convolutional network for single-channel 
speech enhancement. IEEE/ACM Trans. Audio Speech Lang. Process. 29, 
2561–2574 (2021)

 34. K. Tan, D. Wang, in Interspeech 2018. A Convolutional Recurrent Neural 
Network for Real-Time Speech Enhancement, ISCA, Hyderabad (2018), p. 
3229–3233

 35. T. Ke, W. DeLiang, Learning complex spectral mapping with gated con-
volutional recurrent networks for monaural speech enhancement. IEEE/
ACM Trans. Audio Speech Lang. Process. 28, 380–390 (2020)

 36. Y. Luo, N. Mesgarani, Conv-tasnet: Surpassing ideal time-frequency mag-
nitude masking for speech separation. IEEE/ACM Trans. Audio Speech 
Lang. Process. 27(8), 1256–1266 (2019)

 37. A. Pandey, D. Wang, Dense cnn with self-attention for time-domain 
speech enhancement. IEEE/ACM Trans. Audio Speech Lang. Process. 29, 
1270–1279 (2021)

 38. S.W. Fu, T.W. Wang, Y. Tsao, X. Lu, H. Kawai, End-to-end waveform utter-
ance enhancement for direct evaluation metrics optimization by fully 
convolutional neural networks. IEEE/ACM Trans. Audio Speech Lang. 
Process. 26(9), 1570–1584 (2018)

 39. S. Sonning, C. Schüldt, H. Erdogan, S. Wisdom, in 2020 IEEE International 
Conference on Acoustics, Speech and Signal Processing (ICASSP). Perfor-
mance study of a convolutional time-domain audio separation network 
for real-time speech denoising. IEEE, Virtual Barcelona (2020), p. 831–835

 40. S. Wisdom, J.R. Hershey, K. Wilson, J. Thorpe, M. Chinen, B. Patton, R.A. 
Saurous, in 2019 IEEE International Conference on Acoustics, Speech and 
Signal Processing (ICASSP). Differentiable consistency constraints for 
improved deep speech enhancement. IEEE, Brighton (2019), p. 900–904

 41. S. Braun, H. Gamper, in 2022 IEEE International Conference on Acoustics, 
Speech and Signal Processing (ICASSP). Effect of noise suppression losses 
on speech distortion and asr performance. IEEE, Singapore (2022), p. 
996–1000

 42. X. Qin, Z. Zhang, C. Huang, M. Dehghan, O.R. Zaiane, M. Jagersand, 
U2-net: Going deeper with nested u-structure for salient object detec-
tion. Pattern Recognit. 106, 107404 (2020)

 43. S.W. Zamir, A. Arora, S. Khan, M. Hayat, F.S. Khan, M.H. Yang, L. Shao, in 
2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition 
(CVPR). Multi-stage progressive image restoration. IEEE, Virtual (2021), p. 
14816–14826

 44. S. Bai, J.Z. Kolter, V. Koltun, An empirical evaluation of generic convolu-
tional and recurrent networks for sequence modeling. arXiv preprint 
(2018). arXiv:1803.01271

 45. S. Ioffe, C. Szegedy, in 32nd International Conference on Machine Learning. 
Batch normalization: Accelerating deep network training by reducing 
internal covariate shift. JMLR, Lille (2015), p. 448–456

 46. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Drop-
out: A simple way to prevent neural networks from overfitting. J. Mach. 
Learn. Res. 15(1), 1929–1958 (2014)

 47. D.P. Kingma, J. Ba, Adam: A method for stochastic optimization. arXiv 
preprint (2014). arXiv:1412.6980

 48. J. Beerends, A. Rix, M. Hollier, A. Hekstra, in 2001 IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing (ICASSP). Perceptual 
evaluation of speech quality (pesq)-a new method for speech quality 
assessment of telephone networks and codecs. IEEE, Salt Lake City (2001), 
p. 749–752

 49. C.H. Taal, R.C. Hendriks, R. Heusdens, J. Jensen, An algorithm for intel-
ligibility prediction of time-frequency weighted noisy speech. IEEE Trans. 
Audio Speech Lang. Process. 19(7), 2125–2136 (2011)

 50. E. Vincent, R. Gribonval, C. Fevotte, Performance measurement in blind 
audio source separation. IEEE Trans. Audio Speech Lang. Process. 14(4), 
1462–1469 (2006)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Supervised Attention Multi-Scale Temporal Convolutional Network for monaural speech enhancement
	Abstract 
	1 Introduction
	2 Proposed Supervised Attention Multi-Scale TCN for speech enhancement
	2.1 Compressed complex spectrum
	2.2 U-LSTM
	2.3 Supervised attention U -LSTM
	2.4 Gated TCM
	2.5 Multi-scale TCN
	2.6 Loss function
	2.7 Post-processing for signal reconstruction

	3 Experimental setup
	3.1 Dataset construction
	3.2 Training details
	3.3 Baseline models
	3.4 Evaluation metrics

	4 Building a training dataset for real scenarios
	4.1 Language of the training dataset
	4.2 Duration of the training dataset
	4.3 Reverberation of the training dataset

	5 Experiments and analysis
	5.1 Performance comparison for different component configurations
	5.2 Performance comparison for different loss functions
	5.3 Performance comparison with baseline models

	6 Conclusion
	Acknowledgements
	References


