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We present a new technique for separating two speech signals from a single recording. The proposed method bridges the gap
between underdetermined blind source separation techniques and those techniques that model the human auditory system, that is,
computational auditory scene analysis (CASA). For this purpose, we decompose the speech signal into the excitation signal and
the vocal-tract-related filter and then estimate the components from the mixed speech using a hybrid model. We first express
the probability density function (PDF) of the mixed speech’s log spectral vectors in terms of the PDFs of the underlying speech
signal’s vocal-tract-related filters. Then, the mean vectors of PDFs of the vocal-tract-related filters are obtained using a maximum
likelihood estimator given the mixed signal. Finally, the estimated vocal-tract-related filters along with the extracted fundamental
frequencies are used to reconstruct estimates of the individual speech signals. The proposed technique effectively adds vocal-
tract-related filter characteristics as a new cue to CASA models using a new grouping technique based on an underdetermined
blind source separation. We compare our model with both an underdetermined blind source separation and a CASA method.
The experimental results show that our model outperforms both techniques in terms of SNR improvement and the percentage of
crosstalk suppression.
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1. INTRODUCTION

Single channel speech separation (SCSS) is a challenging
topic that has been approached by two primary methods:
blind source separation (BSS) [1–4] and computational au-
ditory scene analysis (CASA) [5–13]. Although many tech-
niques have so far been proposed in the context of BSS or
CASA [12–28], little work has been done to connect these
two topics. In this paper, our goal is to take advantage of both
approaches in a hybrid probabilistic-deterministic frame-
work.

Single channel speech separation is considered an under-
determined problem in the BSS context since the number of
observations is less than the number of sources. In this spe-
cial case, common BSS with independent component anal-
ysis (ICA) techniques fails to separate sources [1–4] due to
the noninvertibility of the mixing matrix. It is, therefore, in-
evitable that the blind constraint on sources be reduced and
ultimately rely on some a priori knowledge of sources. The
SCSS techniques that use a priori knowledge of speakers to

separate the mixed speech can be grouped into two classes:
time domain and frequency domain.

In time domain SCSS techniques [14–18], each source is
decomposed into independent basis functions in the training
phase. The basis functions of each source are learned from
a training data set generally based on ICA approaches. Then
the trained basis functions along with the constraint imposed
by linearity are used to estimate the individual speech sig-
nals via a maximum likelihood optimization. While these
SCSS techniques perform well when the speech signal is
mixed with other sounds, such as music, when the mix-
ture consists of two speech signals, separability reduces sig-
nificantly since the learnt basis functions of two speakers
have a high degree of overlap. In frequency domain tech-
niques [19–23], first a statistical model is fitted to the spec-
tral vectors of each speaker. Then, the two speaker mod-
els are combined to model the mixed signal. Finally, in the
test phase, underlying speech signals are estimated based on
some criteria (e.g., minimum mean square error, likelihood
ratio).
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The other mainstream techniques for SCSS are CASA-
based approaches which exploit psychoacoustic clues for sep-
aration [5–13]. In CASAmethods, after an appropriate trans-
form (such as the short-time Fourier transform (STFT) [9]
or the gammatone filter bank [29]), the mixed signal is seg-
mented into time-frequency cells; then based on some cri-
teria, namely, fundamental frequency, onset, offset, position,
and continuity, the cells that are believed to belong to one
source are grouped. CASA models suffer from two main
problems. First, the current methods are unable to separate
unvoiced speech and second, the formant information is not
included in the discriminative cues for separation.

Besides the above techniques, there have been other at-
tempts that are categorized as neither BSS nor CASA. In [26],
a work was presented based on neural networks and an ex-
tension of the Kalman filter. In [27, 28], a generalizedWiener
filter and an autoregressive model have been applied for gen-
eral signal separation, respectively. Though the techniques
have a mathematical depth that is worth further exploration,
no comprehensive results have been reported on the perfor-
mance of these systems on speech signals.

Underdetermined BSS methods are usually designed
without considering the characteristics of the speech signal.
Speech signals can be modeled as an excitation signal filtered
by a vocal-tract-related filter. In this paper, we develop a tech-
nique that extracts the excitation signals based on a CASA
model and estimates the vocal-tract-related filters based on
a probabilistic approach from the mixed speech. The model,
in fact, adds vocal-tract-related filter characteristics as a new
cue along with harmonicity cues. There have been a number
of powerful techniques for extracting the fundamental fre-
quencies of underlying speakers from the mixed speech [30–
35]. Therefore, we focus on estimating the vocal-tract-related
filters of the underlying signals based on maximum likeli-
hood (ML) optimization. For this purpose, we first express
the probability density function (PDF) of the mixed signal’s
log spectral vectors in terms of the PDFs of the underly-
ing signal’s vocal-tract-related filters. Then the mean vectors
of the PDFs for the vocal-tract-related filters are estimated
in a maximum likelihood framework. Finally, the estimated
mean vectors along with the extracted fundamental frequen-
cies are used to reconstruct the underlying speech signals.
We compare our model with a frequency domain method
and a CASA approach. Experimental results, conducted on
ten different speakers, show that our model outperforms the
two individual approaches in terms of signal-to-noise ratio
(SNR) and the percentage of crosstalk suppression.

The remainder of this paper is organized as follows. In
Section 2, we start with a preliminary study of the basic
concepts of underdetermined BSS and CASA models. The
discussions in that section manifest the pros and cons of
these techniques and the basic motivations for the proposed
method. In Section 3, we review the model and present the
overall functionality of the proposedmodel. The source-filter
modeling of speech signals is discussed in Section 4. Har-
monicity detection is discussed in Section 5 where we extract
the fundamental frequencies of the underlying speech sig-
nals from the mixture. In Section 6, we show how to obtain

the statistical distributions of vocal-tract-related filters in the
training phase. This procedure is performed by fitting a mix-
ture of Gaussian densities to the space feature. Estimating the
PDF of the log spectral vector for the mixed speech in terms
of the PDFs of the underlying signal vocal-tract-related fil-
ters as well as the resulting ML estimator is given in Section 7
with related mathematical definitions. Experimental results
are reported in Section 8 and, finally, conclusions are dis-
cussed in Section 9.

2. PRELIMINARY STUDY

2.1. Underdetermined BSS

In the BSS context, the separation of I source speech signals
when we have access to J observation signals can be formu-
lated as

Yt = AXt, (1)

where Yt = [yt1, . . . , y
t
j , . . . , y

t
J]

T and Xt = [xt1, . . . , x
t
i , . . . , x

t
I]

T

and A = [aj,i]J×I is a (J × I) instantaneous mixing ma-
trix which shows the relative position of the sources from
the observations. Also, vectors ytj = {ytj(n)}Nn=1 and xtj =
{xtj(n)}Nn=1, for j = 1, 2, . . . , J and i = 1, 2, . . . , I , represent
N-dimensional vectors of the jth observation and ith source
signals, respectively.1 Additionally, [·]T denotes the trans-
pose operation and the superscript t indicates that the signals
are in the time domain. When the number of observations is
equal to or greater than the number of sources (J ≥ I), the
solution to the separation problem is simply obtained by es-
timating the inverse of the mixing matrix, that is, W = A−1,
and left multiplying both sides of (1) by W. Many solutions
have so far been proposed for determining the mixing matrix
and quite satisfactory results have been reported [1–4].

However, when the number of observations is less than
the number of sources (J < I), the mixing matrix is nonin-
vertible such that the problem becomes too ill conditioned
to be solved using common BSS techniques. In this case,
we need auxiliary information (e.g., a priori knowledge of
sources) to solve the problem. This problem is commonly re-
ferred to as underdetermined BSS and has recently become a
hot topic in the signal processing realm.

In this paper, we deal with underdetermined BSS in
which we assume J = 1 and I = 2, that is,

yt = xt1 + xt2, (2)

where without loss of generality we assume that the elements
of the mixing matrix (A = [a11 a12]) are included in the
source signals as they do not provide us with useful infor-
mation for the separation process. Generally for underdeter-
mined BSS, a priori knowledge of source signals is used in the

1 It should be noted that throughout the paper the time domain vectors are
obtained by applying a smoothing window (e.g., Hamming window) of
length N on the source and observation signals.
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Figure 1: A schematic of underdetermined BSS techniques.

form of the statistical models of the sources. Figure 1 shows
a general schematic for underdetermined BSS techniques in
the frequency domain. The process consists of two phases:
the training phase and test phase. In the training phase, the
feature space of each speaker is modeled using common sta-
tistical modeling techniques (e.g., VQ, GMM, and HMM).
Then in the test phase, we decode the codevector (when VQ
is used), the mixture component (when GMM is used), or
the state (when HMM is used) of the two models that when
mixed satisfy a minimum distortion criterion compared to
the observed mixed signal’s feature vector. In these models,
three components play important roles in the system’s per-
formance:

(i) selected feature,
(ii) statistical model,
(iii) separation strategy.

Among these components, the selected feature has a di-
rect influence on the statistical model and the separation
strategy used for separation. In previous works [19–23], log
spectra (the log magnitude of the short-time Fourier trans-
form) have been mainly used as the selected feature. In [36],
we have shown that the log spectrum exhibits poor per-
formance when the separation system is used in a speaker-
independent scenario (i.e., training is not on speakers in the
mixed signal). This drawback of the selected feature limits re-
markably the usefulness of underdetermined BSS techniques
in practical situations. In Section 3, we propose an approach
to mitigate this drawback for the speaker-independent case.

Before we elaborate on the proposed approach in the next
subsection, we review the fundamental concepts of compu-
tational auditory scene analysis technique which is a compo-
nent of the proposed technique.
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Figure 2: Basic operations in CASA models.

2.2. Computational auditory scene analysis

The human auditory system is able to pick out one conver-
sation from among dozens in a crowded room. This is a ca-
pability that no artificial system can currently match. Many
efforts have been carried out to mimic this fantastic ability.
There are rich literatures [5–13] on how the human auditory
system solves an auditory scene analysis (ASA). However, less
work has been done to implement this knowledge using ad-
vanced machine learning approaches. Figure 2 shows a block
diagram of the performed operations which attempt to repli-
cate the human auditory system when it receives the sounds
from different sources. These procedures were first dubbed
by Bregman [5] as computational auditory scene analysis. In
the first stage, the mixture sound is segmented into the time-
frequency cells. Segmentation is performed using either the
short-time Fourier transform (STFT) [9] or the gammatone
filter bank [29]. The segments are then grouped based on
cues which are mainly onset, offset, harmonicity, and posi-
tion cues [11]. The position cue is a criterion which differs
between two sounds received from different directions and
distances. Therefore, this discriminative feature is not use-
ful for the SCSS problem where the speakers are assumed to
speak from the same position. Starts and ends of vowel and
plosive sounds are among the other cues which can be ap-
plied for grouping purposes [6]. However, no comprehensive
approach has been proposed to take into account the onset
and offset cues except a recently proposed approach in [37].

Perhaps the most important cue for grouping the time-
frequency segments is the harmonicity cue [38]. Voiced
speech signals have a periodic nature which can be used as
a discriminative feature when speech signals with different
periods are mixed. Thus, the primary goal is to develop al-
gorithms by which we extract the fundamental frequency of
the underlying signals. This topic is commonly referred to
as multipitch tracking and a wide variety of techniques has
so far been proposed [29–33, 39–46]. After determining the
fundamental frequencies of the underlying signals, the time-
frequency cells which lie within the extracted fundamental
frequencies or their harmonics are grouped into two speech
signals.

The techniques based on CASA suffer from two prob-
lems. First, these techniques are not able to separate un-
voiced segments and almost in all reported results one or
both underlying signals are fully voiced [13, 47]. Second,
the vocal-tract-related filter characteristics are not included
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in the discriminative cues for separation. In other words, in
CASA techniques the role of the excitation signal is more im-
portant than the vocal tract shape. In the next section, we
propose an approach to include the vocal tract shapes of the
underlying signals as a discriminative feature along with the
harmonicity cues.

3. MODEL OVERVIEW

In the previous section, we reviewed the two different ap-
proaches for the separation of two speech signals received
from one microphone. In this section, we propose a new
technique which can be viewed as the integration of under-
determined BSS with a limited form of CASA.

As shown in Figure 3, the technique can be regarded as
a new CASA system in which the vocal-tract-related filter
characteristics, which are obtained during a training phase,
are included into a CASA model. Introducing the new cue
(vocal-tract-related filter characteristics) into the system ne-
cessitates a new grouping procedure in which both vocal-
tract-related filter and fundamental frequency information
should be used for separation, a task which is accomplished
using methods from underdetermined BSS techniques.

Figure 4 shows the proposed algorithm in detail. The
whole process can be described in the following stages.

(1) Training phase:

(i) from a large training data set consisting of a wide
variety of speakers extract the log spectral en-
velop vectors (vocal-tract-related filter) based on
the method described in [48],

(ii) fit a Gaussian mixture model (GMM) to the ob-
tained log spectral envelop vectors.

(2) Test phase:

(i) extract the fundamental frequencies of the un-
derlying signals from themixture signal using the
method described in Section 5,

(ii) generate the excitation signals using the method
described in Appendix A,

(iii) add the two obtained log excitation vectors to the
mean vectors of the Gaussian mixture,

(iv) decode the two Gaussian mixture’s mean vectors
which satisfy the maximum likelihood criterion
(23) described in Section 7,

(v) recover the underlying signals using the decoded
mean vectors, excitation signals, and the phase of
the mixed signal.

This architecture has several distinctive attributes. From
the CASA model standpoint, we add a new important cue
into the system. In this way, we apply the vocal tract infor-
mation to separate the speech sources as opposed to current
CASA models which use vocal cord information to separate
the sounds. As an underdetermined BSS technique, the ap-
proach can separate the speech signal even if it comes from
unknown speakers. In other words, the system is speaker-
independent in contrast with current underdetermined blind
source separation techniques that use a priori knowledge
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Figure 3: A new CASA model (proposed model) which includes
the vocal-tract-related filters along with harmonicity cues for sepa-
ration.

of the speakers. This attribute results from separating the
vocal-tract-related filter from the excitation signal, which is
a speaker-dependent characteristic of the speech signal. It
should be noted that from the training data set we obtained
one speaker-independent Gaussian mixture model which is
then used for both speakers as opposed to approaches that
require training data for each of the speakers.

In the following sections, we first present the concept of
source-filter modeling which is the basic framework built on
for the proposed method. Then the components of the pro-
posed technique are described inmore details. In the remain-
ing sections these components are training phase, multipitch
detection, and maximum likelihood estimation in which we
formulate the proposed approach. In particular, we follow
the procedure for obtaining themaximum likelihood estima-
tor by which we are able to estimate the vocal-tract-related
filters of the underlying signals from the mixture signal.

4. SOURCE-FILTERMODELING OF SPEECH SIGNALS

In the process of speech production, an excitation signal pro-
duced by the vocal cord is shaped by the vocal tract. From
the signal processing standpoint, the process can be imple-
mented using a convolution operation between the vocal-
cord-related signal and the vocal-tract-related filter. Thus, for
our case, we have

xti = eti ∗ hti , i ∈ {1, 2}, (3)

where eti = {eti(n)}Nn=1 and hti = {hti(n)}Nn=1, respectively,
represent the excitation signal and vocal-tract-related filter
of the ith speaker computed within the analysis window of
length N . Also, ∗ denotes the convolution operation. Ac-
cordingly, in the frequency domain we have

x
f
i = e

f
i × h

f
i , (4)

where x
f
i = {x f

i (d)}Dd=1, e fi = {e fi (d)}Dd=1, and h
f
i =

{h f
i (d)}Dd=1 represent the D-point discrete Fourier transform

(DFT) of xti , e
t
i , and hti , respectively. The superscript f indi-

cates that the signal is in the frequency domain. In this pa-
per, the main analysis is performed in the log frequency do-
main. Thus transferring the DFT vectors to the log frequency
domain gives

xi = ei + hi, (5)
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Figure 4: A block diagram of the proposed model.

Table 1: Definition of signals which are frequently used.

Signal Time DFT log |DFT|
Observation signal yt y f y

Source signal i ∈ {1, 2} xti x
f
i xi

Vocal-tract-related filter ht
i h

f
i hi

Excitation signal eti e
f
i ei

Estimated source signal x̂ti x̂
f
i x̂i

where xi = log10 |x
f
i | = {xi(d)}Dd=1, hi = log10 |h

f
i | =

{hi(d)}Dd=1, and ei = log10 |e
f
i | = {ei(d)}Dd=1 denote the log

spectral vectors corresponding to x
f
i , e

f
i , and h

f
i , respec-

tively and | · | is the magnitude operation. Since these signals
are frequently used hereafter, we present definitions and the
symbols representing these signals in Table 1.

Harmonic modeling [48] and linear predictive coding
[49] are frequently used to decompose the speech signal into
the excitation signal and vocal-tract-related filter. In har-
monic modeling (the approach we use in this paper), the en-
velope of the log spectrum represents the vocal-tract-related
filter, that is, hi. In addition, a windowed impulse train is
used to represent the excitation signal. For voiced frames, the
period of the impulse train is set to the extracted fundamen-

tal frequency while for the unvoiced frames the period of the
impulse train is set to 100Hz [48] (see Appendix A for more
details).

We use (5) in Section 7 to derive themaximum likelihood
estimator in which the PDF of y is expressed in terms of the
PDFs of the his’. Therefore, it is necessary to obtain ei and
the PDF of hi. The excitation signal ei is constructed using
voicing state and the fundamental frequencies of the under-
lying speech signals which are determined using the multi-
pitch detection algorithm described in the next section. The
PDF of hi is also obtained in the training phase as described
in Section 6.

5. MULTIPITCH DETECTION

The task of the multipitch detection stage is to extract the
fundamental frequencies of the underlying signals from the
mixture. Different methods have been proposed for this task
[30–35, 39–43] which aremainly based on either the normal-
ized cross-correlation [50] or comb filtering [51]. In order
to improve the robustness of the detection stage, some algo-
rithms include preprocessing techniques based on principles
of the human auditory perception system [29, 52, 53]. In
these algorithms, after passing the mixed signal through
a bank of filters, the filter’s outputs (for low-frequency
channels) and the envelop of the filter’s output (for high-
frequency channels) are fed to the periodicity detection stage
[31, 33].
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The comb filter-based periodicity detection algorithms
estimate the underlying fundamental frequencies in two
stages [30, 35, 41, 42]. At the first stage, the fundamental fre-
quency of one of the underlying signals is determined using
a comb filter. Then the harmonics of the measured funda-
mental frequencies is suppressed in the mixed signal and the
residual signal is again fed to the comb filter to determine
the fundamental frequency of the second speaker. Chazan et
al. [30] proposed an iterative multipitch estimation approach
using a nonlinear comb filter. Their technique applies a non-
linear comb filter to capture all quasiperiodic harmonics in
the speech bandwidth such that their method led to better
results than previously proposed techniques in which a comb
filter is used. In this paper, we use the method proposed by
Chazan et al. [30] for the multipitch detection stage.

One shortcoming of multipitch detection algorithms is
that they have been designed for the case in which one or
both concurrent sounds are fully voiced. However, speech
signals are generally categorized into voiced (V) or un-
voiced (U) segments.2 Consequently, the mixed speech with
two speakers contains U/U, V/U, and V/V segments. This
means that in order to have a reliable multipitch detection
algorithm, we should first determine the voicing state of
the mixed signal’s analysis segment. In order to generalize
Chazan’s multipitch detection system, we augment a voicing
state classifier to the multipitch detection system. By doing
this, we first determine the state of the underlying signals,
then either multipitch detection (when state is V/V) or sin-
gle pitch detection (when state is V/U) or no action is ap-
plied on themixed signal’s analysis segment. Figure 5 shows a
schematic of the generalized multipitch detection algorithm.

Several voicing state classifiers have been proposed,
namely, using the spectral autocorrelation peak valley ratio
(SAPVR) criterion [54], nonlinear speech processing [55],
wavelet analysis [56], Bayesian classifiers [57], and harmonic

2 Generally, it is also desired to detect the silence segment, but in this paper
we consider the silence segments as a special case of unvoiced segments.

matching classifier (HMC) [58]. In this paper, we use the
HMC technique [58] for voicing classification. In this way,
we obtain a generalized multipitch tracking algorithm. In a
separate study [59], we evaluated the performance of this
generalizedmultipitch tracking using a wide variety of mixed
signals. On average, this technique is able to detect the fun-
damental frequencies of the underlying signals in the mix-
ture with gross error rate equal to 18%. In particular, we
noticed that most errors occurred when the fundamental
frequencies of the underlying signals are within the range
f01 = f02 ± 15Hz. It should be noted that tracking funda-
mental frequencies in the mixed signal when they are close is
still a challenging problem [31].

6. TRAINING PHASE

In the training phase, we model the spectral envelop vec-
tors (hi) using a mixture of Gaussian probability distribu-
tions known as Gaussian mixture model (GMM). We first
extract the spectral envelop vectors from a large training
database. The database contains speech files from both gen-
ders with different ages. The procedure for extracting the
spectral envelop vectors is similar to that described in [48]
(see Section 8.1 for more details). As mentioned earlier, we
use a training database which contains the speech signal of
different speakers so that we can generalize the algorithm.
This approachmeans that we use one statistical model for the
two speakers’ log spectral envelop vectors. We, however, use
different notations for the two speakers’ log spectral envelop
vectors in order to not confuse them. In the following, we
model the PDF of the log spectral vectors of the vocal-tract-
related filter for the ith speaker by a mixture of Ki Gaussian
densities in the following form:

fhi
(
hi
)

�
Ki∑
k=1

chi ,kN
(
hi,μhi,k,Uhi,k

)
, i ∈ {1, 2}, (6)
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here chi,k represents the a priori probability for the kth Gaus-
sian in the mixture and satisfies

∑
k chi ,k = 1 and

N
(
hi,μhi ,Uhi

)
�

exp
(− (1/2)

(
hi − μhi

)T
U−1hi

(
hi − μhi

))√
(2π)D

∣∣Uhi

∣∣
(7)

represents aD-dimensional normal density function with the
mean vector μhi,k and covariance matrix Uhi,k. The D-variate
Gaussians are assumed to be diagonal covariant to reduce the
order of the computational complexity. This assumption en-
ables us to represent the multivariate Gaussian as the product
of D univariate Gaussians given by

fhi
(
hi
)
�

Ki∑
k=1

chi,k

D∏
d=1

exp
(−(1/2)((hi(d)−μhi,k(d))/σhi ,k(d))2)√

2πσhi,k(d)
,

(8)

where hi(d), μhi,k(d), and σ2hi,k(d) are the dth component of
hi, dth component of the mean vector, and the dth element
on the diagonal of the covariance matrix Uhi,k, respectively.

In this way, we have the statistical distributions of the
vocal-tract-related filters as a priori knowledge. These distri-
butions are then used in the ML estimator.

7. MAXIMUM LIKELIHOOD ESTIMATOR

After fitting a statistical model to the log spectral envelop vec-
tors and generating the excitation signals using obtained fun-
damental frequencies in the multipitch tracking stage, we are
now ready to estimate the vocal-tract-related filters of the un-
derlying signals. In this section, we first express the PDF of
the mixed signal’s log spectral vectors in terms of the PDFs
of the log spectral vectors for the vocal-tract-related filters of
the underlying signals. We then obtain an estimate of the un-
derlying signals’ vocal-tract-related filters using the obtained
PDF in a maximum likelihood framework. In Table 2, nota-
tions and definitions which are frequently used in this section
are summarized.

To begin, we should first obtain a relation between the log
spectral vector of the mixed signal and those of the underly-
ing signals. From the mixture-maximization approximation
[60], we know

y ≈Max
(
x1, x2

)
= [max

(
x1(1), x2(1)

)
, . . . ,max

(
x1(d), x2(d)

)
, . . . ,

max
(
x1(D), x2(D)

)]T
,

(9)

where y = log10 |y f |, x1 = log10 |x
f
1 |, and x2 = log10 |x

f
2 |,

and max(·, ·) returns the larger element. Equation (9) im-
plies that the log spectrum of the mixed signal is almost ex-
actly the elementwise maximum of the log spectrum of the
two underlying signals.

Table 2: Symbols with definitions.

Symbol Description

I number of sources i ∈ {1, 2}
D order of DFT

K number of Gaussian mixtures

fs(s) PDF of signal s ∈ {xi,hi, or y}
Fs(s) CDF of signal s ∈ {xi,hi, or y}
μhi ,k kth Gaussian mixture’s mean vector

σ2
hi ,k kth Gaussian mixture’s variance vector

To begin, we first express the PDF of xi in terms of the
PDF of hi given ei. Clearly,

fxi
(
xi
) = fhi

(
xi − ei

)
, i ∈ {1, 2}, (10)

which is the result of (5) and the assumption that ei is a deter-
ministic signal (we obtained ei through multipitch detection
and through generating the excitation signals). Thus the PDF
of xi, for i ∈ {1, 2}, is identical to the PDF of hi except with a
shift in the mean vector equal to ei. The relation between the
cumulative distribution function (CDF) of xi and those of hi
is also related in a way similar to (10), that is,

Fxi
(
xi
) = Fhi

(
xi − ei

)
, (11)

where

Fhi(σ) =
∫ σ

−∞
fhi(ξ)dξ, i ∈ {1, 2}, (12)

in which σ is an arbitrary vector.
From (9), the cumulative distribution function (CDF) of

the mixed log spectral vectors Fy(y) is given by

Fy(y) = Fx1x2 (y, y), (13)

where Fx1x2 (y, y) is the joint CDF of the random vectors x1
and x2. Since the speech signals of the two speakers are inde-
pendent, then

Fy(y) = Fx1 (y)× Fx2 (y). (14)

Thus fy(y) is obtained by differentiating both sides of
(14) to give

fy(y) = fx1 (y) · Fx2 (y) + fx2 (y) · Fx1 (y). (15)

Using (10) and (11) it follows that

fy(y) = fh1
(
y − e1

)
· Fh2

(
y − e2

)
+ fh2

(
y − e2

) · Fh1(y − e1
)
.

(16)
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The CDF to express Fhi(y−ei) is obtained by substituting
fhi(hi) from (8) into (12) to give

Fhi
(
y − ei

)
=
∫ y−ei

−∞
fhi(ξ)dξ =

∫ y(d)−ei(d)

−∞

Ki∑
k=1

chi ,k

D∏
d=1

×
[

1
σhi,k(d)

√
2π
× exp

(
− 1

2

(
ξd − μhi,k(d)
σhi,k(d)

)2)]
dξd.

(17)

Since the integration of the sum of the exponential functions
is identical to the sum of the integral of exponentials as well
as assuming a diagonal covariance matrix for the distribu-
tions, we conclude that

Fhi
(
y − ei

)
=

Ki∑
k=1

chi,k

D∏
d=1

[
1

σhi ,k(d)
√
2π

×
∫ y(d)−ei(d)

−∞
exp

(
− 1
2

(
ξd−μhi ,k(d)
σhi,k(d)

)2)
dξd

]
.

(18)

The term in the bracket in (18) is often expressed in terms of
the error function

erf(α) = 1√
2π

∫ α

0
exp

(
− 1

2
ν2
)
dν. (19)

Thus, we conclude that

Fhi
(
y − ei

) = Ki∑
k=1

chi,k

D∏
d=1

[
erf
(
zhi,k(d)

)
+
1
2

]
, (20)

where

zhi,k(d) =
y(d)− ei(d)− μhi,k(d)

σhi,k(d)
, i ∈ {1, 2}. (21)

Finally, we obtain the PDF of the log spectral vectors of the
mixed signal by substituting (10) and (20) into (16) to give

fy(y) =
K1∑
k=1

K2∑
l=1

ch1,kch2,l

×
( D∏

d=1

[(
2πσ2h1,k(d)

)−1/2 × ( erf (zh2,l(d)) + 1
2

)

× exp
(
− 1

2
z2h1,l(d)

)]

+
D∏
d=1

[(
2πσ2h2,l(d)

)−1/2 × ( erf (zh1,k(d)) + 1
2

)

× exp
(
− 1

2
z2h2,l(d)

)])
.

(22)

Equation (22) gives the PDF of log spectral vectors for the
mixed signal in terms of the mean and variance of the log
spectral vectors for the vocal-tract-related filters of the un-
derlying signals.

Now we apply fy(y) in a maximum likelihood frame-
work to estimate the parameters of the underlying signals.
The main objective of the maximum likelihood estimator is
to find the kth Gaussian in fh1 (h1; λh1 ) and the lth Gaussian
in fh2 (h2; λh2 ) such that fy(y) is maximized. The estimator is
given by

{k̂, l̂ }ML = argmax
θk,l

fy
(
y | θk,l

)
, (23)

where

θk,l =
{
μh1,k,μh2,l, σh1,k, σh2,l

}
. (24)

The estimated mean vectors are then used to reconstruct
the log spectral vectors of the underlying signals. Using (5),
we have

x̂1 = μ̂h1,k̂ + e1,

x̂2 = μ̂h2,l̂ + e2,
(25)

where x̂1 and x̂2 are the estimated log spectral vectors for
speaker one and speaker two, respectively. Finally, the esti-
mated signals are obtained in the time domain by

x̂ti = FD
−1(10x̂i · ϕy

)
, i ∈ {1, 2}, (26)

where FD
−1 denotes the inverse Fourier transform and ϕy is

the phase of the Fourier transform of the windowed mixed
signal, that is, ϕy = ∠y f . In this way, we obtain an estimate
of xti in a maximum likelihood sense. It should be noted that
it is common to use the phase of the STFT of the mixed sig-
nal for reconstructing the individual signals [13, 19–21] as it
has no palpable effect on the quality of the separated signals.
Recently, it has been shown that the phase of the short-time
Fourier transform has valuable perceptual information when
the speech signal is analyzed with a window of long duration,
that is,> 1 second [61]. To the best of our knowledge no tech-
nique has been proposed to extract the individual phase val-
ues from the mixed phase. In the following section we eval-
uate the performance of the estimator by conducting experi-
ments on mixed signals.

8. EXPERIMENTAL RESULTS AND COMPARISONS

In order to evaluate the performance of our proposed tech-
nique, we conducted the following experiments. We first
explain the procedure for extracting vocal-tract-related fil-
ters in the training phase; then we describe three different
separation models with which we compare our model. The
techniques are the ideal binary mask, MAXVQ model, and
harmonic magnitude suppression (HMS). The ideal binary
mask model (see Appendix B for more details) is an upper
bound for SCSS systems. Comparing our results with the
ideal case shows the gap between the proposed system and
an ideal case. The HMS method, which is categorized as a
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CASA model, uses the harmonicity cues for separation. In
this way, we compare ourmodel with amodel which uses one
cue (harmonicity cue) instead of our model which uses har-
monicity as well as vocal-tract-related filters for separation.
The MAXVQ separation technique is an underdetermined
BSS method which uses the quantized log spectral vectors as
a priori knowledge to separate the speech signal. Thus, we
compare our model with both a CASA model and an under-
determined BSS technique. After introducing the feature ex-
traction procedure andmodels, the results in terms of the ob-
tained SNR and the percentage of crosstalk suppression are
reported.

8.1. Feature extraction

We used one hour of speech signals from fifteen speakers.
Five speakers among the fifteen speakers were used for the
training phase and the remaining ten speakers were used for
the testing phase. Throughout all experiments, a Hamming
window with a duration of 32 milliseconds and a frame rate
of 10 milliseconds was used for short-time processing of the
data. The segments are transformed into the frequency do-
main using a 1024-point discrete Fourier transform (D =
1024), resulting in spectral vectors of dimension 512 (sym-
metry was discarded).

In the training phase, we must extract the log spectral
vectors of the vocal-tract-related filters (envelop spectra) of
the speech segments. The envelop spectra are obtained by
a method proposed by Paul [62] and further developed by
McAulay and Quatieri [48]. In this method, first all peaks
in a given spectrum vector are marked, and then the peaks
whose occurrences are close to the fundamental frequencies
and their harmonics are held and the remaining peaks are
discarded. Finally, a curve is fitted to the selected peaks us-
ing cubic spline interpolation [63]. This process requires the
fundamental frequency of the processed segment, so we use
the pitch detection algorithm described in [64] to extract
the pitch information. It should be noted that during the
unvoiced segments no fundamental frequency exists, but as
shown in [48], we can use an impulse train with fundamen-
tal frequency of 100Hz as a reasonable approximation. This
dense sampling of the unvoiced envelop spectra holds nearly
all information contained in the unvoiced segments. As men-
tioned in Section 4, the spectrum vector xi can be decom-
posed into the vocal-tract-related filter hi and the excitation
signal ei, two components by which our algorithm is devel-
oped. Figures 6 and 7 show an example of the original and
synthesized spectra for a voiced segment and an unvoiced
segment, respectively. In Figures 6(a) and 7(a) the original
spectra and envelop are shown, while in Figures 6(b) and
7(b) the synthesized spectra are shown which are the results
of multiplying the vocal-tract-related filter hi by the excita-
tion signal ei. In these figures, the extracted envelop vector
hi (vocal-tract-related filter) is superimposed on the corre-
sponding spectrum xi. The resulting envelop vectors have
a dimension of 512 which makes the training phase com-
putationally intensive. As it was shown in [48], due to the
smooth nature of the envelop vectors, the envelop vector can
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Figure 6: Analysis and synthesis of the spectrum for a voiced seg-
ment: (a) envelop superimposed on the original spectrum and (b)
envelop superimposed on the synthesized spectrum.
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Figure 7: Analysis and synthesis of the spectrum for an unvoiced
segment: (a) envelop superimposed on the original spectrum and
(b) envelop superimposed on the synthesized spectrum.

be downsampled by a factor of 8 to reduce the dimension to
64.

After extracting the envelop vectors, we fit a 1024-
component mixture Gaussian density fhi(hi) to the training
data set. Initial values for the mean vectors μi of the Gaussian
mixtures are obtained using a 10-bit codebook [65, 66] and
the components are assumed to have the same probability. As
mentioned earlier, we compare our model with three meth-
ods. In the following, we present a short description of these
models.
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8.2. Ideal binarymask

An ideal model, known as the ideal binary mask [67], is used
for the first comparison (see Appendix B for more details).
This method is in fact an upper bound that an SCSS system
can reach. Although the performance of current separation
techniques is far from that of the ideal binary approach, in-
cluding the ideal results in experiments reveals how much
the current techniques must be improved to approach the
desired model if x1 and x2 were known in an a priori fashion.

8.3. MAXVQ technique

We also compare our model with a technique known as
MAXVQ [23] which is an SCSS technique based on the un-
derdetermined BSS principle. The technique is spiritually
similar to the ideal binary mask except that the actual spec-
tra are replaced by an N-bit codebook (we use N = 1024)
of the quantized spectrum vectors for modeling the feature
space of each speaker. The objective is to find the codevec-
tors that when mixed satisfy a minimum distortion crite-
rion compared to the observed mixed speech’s feature vector.
MAXVQ is in fact a simplified version of the HMM-based
speech separation techniques [19, 20] in which two paral-
lel HMMs are used to decode the desired states of individ-
ual HMMs. In the MAXVQmodel, the intraframe constraint
imposed by HMMmodeling is removed to reduce computa-
tional complexity. We chose this technique since it is similar
to ourmodel but with twomajor differences: first, no decom-
position is performed such that spectrum vectors are directly
used for separation, and second, the inferring strategy is dif-
ferent from our model in which the ML vocal-tract-related
filter estimator is used.

8.4. Harmonicmagnitude suppressionmodel

Since in our model fundamental frequencies are used along
with envelop vectors, we compare our model with a tech-
nique in which fundamental frequencies solely are used
for separation. For this purpose, we use the so-called har-
monic magnitude suppression [42, 68] technique. In the HMS
method, two comb filters are constructed using the obtained
fundamental frequencies obtained by using a multipitch de-
tection tracking algorithm. The product of the mixed spec-
trum with the corresponding comb filter of each speaker is
the output of the system. In this way we, in fact, suppress
the peaks in log spectrum whose locations correspond to the
fundamental frequency and all related harmonics to recover
the separated signals. For extracting the fundamental fre-
quencies of two speakers from the mixture, we use the mul-
tipitch tracking algorithm described in Section 5.

8.5. Results

For the testing phase, ten speech files are selected from the
ten test speakers (one sentence from each speaker) andmixed
in pairs to produce five mixed signals for the testing phase.
We chose the speech files for the speakers independent and
outside of the training data set to evaluate the independency

Table 3: SNR results (dB).

Mix Sep (a) (b) (c) (d)

f1 +m6
† f1 11.54 6.80 3.56 4.16

f1 +m6 m6 11.57 7.76 3.19 5.25

f2 +m7 f2 11.61 6.75 2.33 3.53

f2 +m7 m7 11.08 6.73 3.28 5.04

f3 +m8 f3 11.21 6.98 2.86 5.39

f3 +m8 m8 10.91 6.60 2.59 4.53

f4 + f9 f4 8.86 5.60 3.33 3.81

f4 + f9 f9 9.95 5.21 3.49 3.80

m5 +m10 m5 10.17 5.61 2.38 3.75

m5 +m10 m10 10.05 5.90 1.70 4.12

Ave‡ 10.7 6.40 2.88 4.33

(a)Ideal binary mask (upper bound for separation) [67].
(b)Proposed method.
(c)MAXVQ method [23].
(d)HMS [42, 68].
† fi andmj show speech signals of ith female and jth male speakers,
respectively.
‡Averaged SNR over the ten speech files.

of our model from speakers. The test utterances are mixed
with aggregate signal-to-signal ratio adjusted to 0 dB.

In order to quantify the degree of the separability, we
chose two criteria: (i) the SNR between the separated and
original signals in the time domain and (ii) the percentage of
crosstalk suppression [13]. The SNR for the separated speech
signal of the ith speaker is defined as

SNRi = 10 · log10
[ ∑

n

(
xti (n)

)2∑
n

(
xti (n)− x̂ti (n)

)2
]
, n = 1, 2, . . . ,ℵ,

(27)

where xti (n) and x̂ti (x) are the original and separated speech
signals of length ℵ, respectively.

The second criterion is the percentage of crosstalk sup-
pression, Pi, which quantifies the degree of suppression of
interference (crosstalk) in the separated signals (for more de-
tails see Appendix C).

The SNR and the percentage of crosstalk suppression are
reported in Tables 3 and 4, respectively. The first column in
each table represents the mixed speech file pairs, the sec-
ond column represents the resulting separated speech file
from the mixture. In Table 3, the SNR obtained using (a)
the ideal binary mask approach, (b) our proposed method,
(c) MAXVQ technique, and (d) HMS method is given in
columns three to six, respectively. The last row shows the
SNR averaged over the ten separated speech files. Analogous
to Table 3, Table 4 instead shows the percentage of crosstalk
suppression (Pi) for each separated speech file.

As the results in Tables 3 and 4 show, our model signif-
icantly outperforms the MAXVQ and HMS techniques both
in terms of SNR and the percentage of crosstalk suppression.
However, there is a significant gap between our model and
the ideal binary mask case. On average, an improvement of
3.52 dB for SNR and an improvement of 28% in suppress-
ing crosstalk are obtained using our method. The results
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Table 4: Percentage of crosstalk suppression (%).

Mix Sep (a) (b) (c) (d)

f1 +m†
6 f1 100 85.4 73.8 65.6

f1 +m6 m6 100 85.5 75.8 68.2

f2 +m7 f2 100 84.3 69.4 63.5

f2 +m7 m7 100 89.7 73.1 66.5

f3 +m8 f3 100 83.2 70.5 62.7

f3 +m8 m8 100 81.4 72.6 61.4

f4 + f9 f4 100 83.8 70.2 69.6

f4 + f9 f9 100 87.2 67.6 65.3

m5 +m10 m5 100 80.3 76.4 67.5

m5 +m10 m10 100 83.3 75.1 66.6

Ave‡ 100 84.3 72.3 65.4

(a)Ideal binary mask (upper bound for separation) [67].
(b)Proposed method.
(c)MAXVQ method [23].
(d)HMS [42, 68].
† fi andmj show speech signals of ith female and jth male speakers,
respectively.
‡Averaged Pi values over the ten speech files.

obtained for the HMS method show that in terms of SNR,
that the HMS method outperforms MAXVQ, although the
HMS approach suffers severely from crosstalk.

Figure 8 shows an example of two separated speech sig-
nals from their mixture using the proposed technique. The
speech signals in the upper panels, (a) and (b), are the origi-
nal signals of a male speaker and a female speaker. The mid-
dle panel (c) shows their mixture and the signals in the bot-
tom panels, (d) and (e), are the corresponding separated sig-
nals. As Figure 8 shows, the proposed separation model sep-
arates the individual signals accurately. In particular, notice
the portion where a voiced segment overlaps with an un-
voiced segment (around 1.2 seconds). Though it is very dif-
ficult to extract unvoiced segments in such a situation, our
proposed algorithm extracts unvoiced segments even with
an energy lower than the voiced segment. The performance
of our model can be improved by increasing the number of
Gaussian mixtures. However, this in turn increases the de-
coding time.

9. CONCLUSIONS

We have presented a maximum likelihood approach to per-
form separation of two speech signals from a mixture. The
problem is too ill conditioned (due to the noninvertibility
of mixing matrix) to be solved using the common BSS tech-
niques. Therefore, we use a special case of BSS methods that
rely on a priori knowledge of speakers. In contrast with pre-
vious methods, we take into account the characteristics of
the speech signal where each component of the speech sig-
nal, vocal-tract-related filter, and excitation signal is sepa-
rated using two different strategies, namely, a probabilistic
approach and a deterministic approach. Using this hybrid
model we have linked the underdetermined BSS techniques
with CASA algorithms. The separability of our model out-

performs the two techniques that use either the underdeter-
mined BSS or CASA approaches. These results reveal that in
order to obtain a better separation technique we should in-
corporate the speech signal characteristic into probabilistic
models as we did for the special case for fundamental fre-
quencies. In this paper, we only incorporate the harmonicity
cue in our model. We believe that further work should be
done to first incorporate the other cues presented in CASA
models (onset, offset cues) into the system and second extend
the model such that it includes the dynamic characteristics of
the speech signal into the model using an HMMmodel.

APPENDICES

A. CONSTRUCTING THE EXCITATION SIGNALS

The vocal-cord-related signal, which is commonly referred to
as the excitation signal, is in the form of an impulse train and
a white noise process for voiced speech signals and unvoiced
speech signals, respectively, and represented by

et(n) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
+∞∑

τ=−∞
δ
(
n− τ

f0

)
wt(n), voiced speech,

N
(
0, σ2

)
wt(n), unvoiced speech,

n = 1, 2, . . . , N ,

(A.1)

where δ(n) denotes the impulse function and f0 is the funda-
mental frequency of the voiced speech signal.N (0, σ2) repre-
sents zero mean white Gaussian noise with variance σ2. Also,
wt(n) represents the analysis window applied for short-term
processing. Taking the D-point Fourier transform of both
sides of (A.1), gives

e f (d) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
M(ω0)∑
m=1

w f
(
d −mω0

)
, voiced speech,

σ2, unvoiced speech,

d = 1, 2, . . . , D,

(A.2)

in which ω0 = 2π f0/D, where f0 denotes the fundamen-
tal frequency of the voiced speech signal. Also, M(ω0) rep-
resents the number of harmonics in the speech bandwidth
and w f (d) represents the Fourier transform of the analysis
window. As shown in [48] for better perceptual results, we
can also use a windowed impulse train with a period equal
to 100Hz during the unvoiced speech. Thus the excitation
signal can be reexpressed as

e f (d) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M(ω0)∑
m=1

w f
(
d −mω0

)
, voiced speech,

M(ωun
0 )∑

m=1
w f
(
d −mωun

0

)
, unvoiced speech(

ωun
0 = 2π100

)
,

d = 1, 2, . . . ,D,

(A.3)
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Figure 8: An example of the separated speech signals obtained by ML vocal-tract-related filter: (a) original female speaker, (b) original male
speaker, (c) mixed speech signal, (d) separated female speaker, and (e) separated male speaker.

where σ2 is assumed to be included in the vocal-tract-related
filter. Therefore, the excitation signal can be interpreted as
the windowed impulse with a period equal to the funda-
mental frequency of the analysis frame for voiced frames and
100Hz for unvoiced frames.

B. SEPARATION USING THE IDEAL BINARYMASK

In this appendix, we describe the ideal binary mask separa-
tion method [67]. We then, based on this method, explain a
method for measuring the amount of crosstalk introduced in
a separation system. As explained in Section 7, the log spec-
tral vector of the mixed signal and those of the underlying
signals are related through (9). Suppose that we have access
to the original underlying signals x1 and x2. From these log
spectral vectors, we construct two ideal binary masks in the

form

maskideal1 (d) =
⎧⎨⎩0, x1(d) < x2(d),

1, x1(d) ≥ x2(d),

maskideal2 (d) =
⎧⎨⎩0, x2(d) < x1(d),

1, x2(d) ≥ x1(d),
d = 1, 2, . . . ,D.

(B.4)

Multiplying the ideal masks by the mixed log spectral vector
gives an estimate of the log spectral vectors of the underlying
signals, that is,

x̂ideal1 = y ×maskideal1 ,

x̂ideal2 = y ×maskideal2 .
(B.5)
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The estimated log spectral vector along with the phase of the
mixed signal is used to recover the speech signals in the time
domain, thus

x̂t,ideali = FD
−1(10x̂ideali · ϕy

)
, i ∈ {1, 2}, (B.6)

where FD
−1 denotes the inverse Fourier transform and ϕy =

∠y f is the phase of the Fourier transform of the windowed
mixed signal.

High-quality separated speech signals are obtained using
the ideal binary masks. Inspired by this, the goal of many
SCSS techniques in both CASA and BSS contexts is to ob-
tain the separated signals whose binary masks is as close as
possible to the ideal binary masks. In this way, a criterion to
evaluate a separation system is to compare the binary masks
obtained from the estimated log spectral vector to the ideal
binary masks obtained from the original log spectral vec-
tors. Or equivalently, compare the separated signals to the
obtained signals from applying the ideal binary masks.

C. COMPUTING THE CROSSTALK SUPPRESSION RATE

The binary masks are also used to compute the amount of
crosstalk introduced in separation algorithms in the follow-
ing way. Let x̂1 and x̂2 be the estimated log spectral vectors
obtained by a separation system. We construct two binary
masks, mask1 and mask2, from the estimated log spectral
vectors x̂1 and x̂2 in a way similar to (B.4). Accepting the
ideal binary mask approach as a system that suppresses all
crosstalks, two new masks are generated by the routine de-
scribed as follows. When we apply a binary mask, we in fact
suppress all frequency bins that belong to the other speak-
ers and keep the ones we wish to recover. Therefore, when
a frequency bin in an ideal binary mask is zero while in the
estimated binary mask it is one, it means that the applied
separation technique is not able to suppress this frequency
bin. Thus the crosstalk mask contains all frequency bins that
should be suppressed, but the separation algorithm fails to
suppress. Consequently, the signal which is obtained by ap-
plying the crosstalk mask is the crosstalk signal. This process
can be explained as follows.

Suppose we obtain the crosstalk masks, maskcrosstalk1 and
maskcrosstalk2 . The log spectral crosstalk vectors are obtained
from

xcrosstalk1 = y ×maskcrosstalk1 ,

xcrosstalk2 = y ×maskcrosstalk2

(C.7)

and similar to previous discussions, the windowed crosstalk
signals in the time domain are given by

xt,crosstalki = FD
−1(10xcrosstalki · ϕy

)
, i ∈ {1, 2}. (C.8)

The whole crosstalk utterance can be obtained from the
overlap-add method performed on windowed crosstalk seg-
ments. Finally, we define the ratio between the energy of
the crosstalk signal to the energy of the signal recovered by
the ideal binary mask as the crosstalk-to-signal (CTS) ratio,

given by

CTSi =
∑

n

(
xt,crosstalki (n)

)2∑
n
(
x̂t,ideali (n)

)2 , n = 1, 2, . . . ,ℵ, i ∈ {1, 2},
(C.9)

where ℵ represents the length of the whole utterance. The
percentage of crosstalk suppression is then defined as

Pi =
(
1− CTSi

)× 100%, i ∈ {1, 2}. (C.10)

We use this criterion to evaluate the system’s performance.
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